Skip to main content
Log in

Recombination-suppression: how many mechanisms for chromosomal speciation?

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Over the past decade several theoretical and empirical studies have revived interest in the role of chromosomes in speciation. The resulting models do not suffer from the problems experienced by previously proposed mechanisms of chromosomal speciation, because they invoke suppression of recombination rather than a reduction in the fitness of heterokaryotypes as their core process. However, they are not free from difficulties. The evidence for recombination-suppression models is discussed here. The general conclusion is that a consensus opinion on which models best describe the real-world situation is currently unlikely because of an inability of the available empirical evidence to fully distinguish between them, which may be due in part to a lack of exclusivity. I argue that future work should take this lack of exclusivity into account. Resolving the biogeography of speciation is also suggested in order to tell the various models apart. Further study is needed which focuses on confirming the operation of individual elements of the various models, rather than attempting to validate any single mechanism as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ayala FJ, Coluzzi M (2005) Chromosome speciation: humans, Drosophila and mosquitoes. Proc Natl Acad Sci USA 102:6535–6542

    Article  PubMed  CAS  Google Scholar 

  • Brown KM, Burk LM, Henagan LM, Noor MAF (2004) A test of the chromosomal rearrangement model of speciation in Drosophila pseudoobscura. Evolution 58:1856–1860

    PubMed  Google Scholar 

  • Bush GL, Case SM, Wilson AC, Patton JL (1977) Rapid speciation and chromosomal evolution in mammals. Proc Natl Acad Sci USA 74:3942–3946

    Article  PubMed  Google Scholar 

  • Butlin RK (2005) Recombination and speciation. Mol Ecol 14:2621–2635

    Article  PubMed  CAS  Google Scholar 

  • Butlin RK, Galindo J, Grahame JW (2008) Sympatric, parapatric or allopatric: the most important way to classify speciation? Philos Trans R Soc B 363:2997–3007

    Article  Google Scholar 

  • Chang AS, Noor MAF (2007) The genetics of hybrid male sterility between the allopatric species pair Drosophila persimilis and D. pseudoobscura bogotana: dominant sterility alleles in collinear autosomal regions. Genetics 176:343–349

    Article  PubMed  CAS  Google Scholar 

  • Chen FC, Li WH (2001) Genomic divergences between humans and other hominoids and the effective population size of the common ancestor of humans and chimpanzees. Am J Hum Genet 68:444–456

    Article  PubMed  CAS  Google Scholar 

  • Christie P, Macnair MR (1984) Complementary lethal factors in two North American populations of the yellow monkey flower. J Hered 75:510–511

    Google Scholar 

  • Coyne JA, Orr HA (1989) Patterns of speciation in Drosophila. Evolution 43:362–381

    Article  Google Scholar 

  • Coyne JA, Orr HA (1998) The evolutionary genetics of speciation. Philos Trans R Soc Lond Ser B 353:287–305

    Article  CAS  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland

    Google Scholar 

  • Coyne JA, Aulard S, Berry A (1991) Lack of underdominance in a naturally occurring pericentric inversion in Drosophila melanogaster and its implications for chromosome evolution. Genetics 129:791–802

    PubMed  CAS  Google Scholar 

  • Davisson MT, Akeson EC (1993) Chromosomes in the mouse. Genetics 667:649–667

    Google Scholar 

  • Faria R, Navarro A (2010) Chromosomal speciation revisited: rearranging theory with pieces of evidence. Trends Ecol Evol 25:660–669

    Article  PubMed  Google Scholar 

  • Feder JL, Nosil P (2009) Chromosomal inversions and species differences: when are genes affecting adaptive divergence and reproductive isolation expected to reside within inversions? Evolution 63:3061–3075

    Article  PubMed  Google Scholar 

  • Felsenstein J (1981) Scepticism towards Santa Rosalia, or why are there so few kinds of animals? Evolution 35:124–138

    Article  Google Scholar 

  • Fishman L, Willis JH (2001) Evidence for Dobzhansky-Muller incompatibilities contributing to the sterility of hybrids between Mimulus guttatus and M. nasutus. Evolution 55:1932–1942

    PubMed  CAS  Google Scholar 

  • Gavrilets S (2000) Waiting time to parapatric speciation. P R Soc B Biol Sci 267:2483–2492

    Article  CAS  Google Scholar 

  • Gavrilets S (2003) Perspective: models of speciation: what have we learned in 40 years? Evolution 57:2197–2215

    PubMed  Google Scholar 

  • Graubard MA (1931) Inversions in Drosophila melanogaster. Genetics 17:81–104

    Google Scholar 

  • Hale DW (1986) Heterosynapsis and suppression of chiasmata within heterozygous pericentric inversions of the Sitka deer mouse. Chromosoma 94:425–432

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann AA, Rieseberg LH (2008) Revisiting the impact of inversions in evolution: from population genetic markers to drivers of adaptive shifts and speciation? Annu Rev Ecol Evol Syst 39:21–42

    Article  PubMed  Google Scholar 

  • Karaman MW, Houck ML, Chemnick LG, Nagpal S, Chawannakul D, Sudano D, Pike BL, Ho VV, Ryder OA, Hacia JG (2003) Comparative analysis of gene-expression patterns in Human and African great ape cultured fibroblasts. Genome Res 13:1619–1630

    Article  PubMed  CAS  Google Scholar 

  • Khaitovich P, Muetzel B, She X, Lachmann M, Hellmann I, Dietzsch J, Steigele S, Do HH, Weiss G, Enard W et al (2004) Regional patterns of gene expression in human and chimpanzee brains. Genome Res 14:1462–1473

    Article  PubMed  CAS  Google Scholar 

  • Kirkpatrick M, Barton N (2006) Chromosomal inversions, local adaptation, and speciation. Genetics 173:419–434

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov AS (2003) Accumulation of Dobzhansky-Muller incompatibilities within a spatially structured population. Evolution 57:151–153

    PubMed  Google Scholar 

  • Kulathinal RJ, Stevison LS, Noor MAF (2009) The genomics of speciation in Drosophila: diversity, divergence, and introgression estimated using low-coverage genome sequencing. PLoS Genet 5:e1000550

    Article  PubMed  Google Scholar 

  • Kumar S, Filipski A, Swarna V, Walker A, Hedges SB (2005) Placing confidence limits on the molecular age of the human-chimpanzee divergence. Proc Natl Acad Sci USA 102:18842–18847

    Article  PubMed  CAS  Google Scholar 

  • Levin DA, Wilson AC (1976) Rates of evolution in seed plants: net increase in diversity of chromosome numbers and species numbers through time. Proc Natl Acad Sci USA 73:2086–2090

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Li W-H, Wu C-I (2003) Comment on ‘Chromosomal speciation and molecular divergence-accelerated evolution in rearranged chromosomes’. Science 302:988

    Article  PubMed  CAS  Google Scholar 

  • Machado CA, Haselkorn TS, Noor MAF (2007) Evaluation of the genomic extent of effects of fixed inversion differences on intraspecific variation and interspecific gene flow in Drosophila pseudoobscura and D. persimilis. Genetics 175:1289–1306

    Article  PubMed  CAS  Google Scholar 

  • Mallet J (2006) What does Drosophila genetics tell us about speciation? Trends Ecol Evol 21:386–393

    Article  PubMed  Google Scholar 

  • Marquès-Bonet T, Caceres M, Bertranpetit J, Preuss TM, Thomas JW, Navarro A (2004) Chromosomal rearrangements and the genomic distribution of gene-expression divergence in humans and chimpanzees. Trends Genet 20:524–529

    Article  PubMed  Google Scholar 

  • Mayr E (1942) Systematics and the origin of species, from the viewpoint of a zoologist. Columbia University Press, New York

    Google Scholar 

  • Mikkelson et al. The Chimpanzee Sequencing and Analysis Consortium (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69–87

  • Navarro A, Barton NH (2003a) Accumulating postzygotic isolation genes in parapatry: a new twist on chromosomal speciation. Evolution 57:447–459

    PubMed  Google Scholar 

  • Navarro A, Barton NH (2003b) Chromosomal speciation and molecular divergence—accelerated evolution in rearranged chromosomes. Science 300:321–324

    Article  PubMed  CAS  Google Scholar 

  • Navarro A, Bétran E, Barbadilla A, Ruiz A (1997) Recombination and gene flux caused by gene conversion and crossing over in inversion heterokaryotypes. Genetics 146:695–709

    PubMed  CAS  Google Scholar 

  • Navarro A, Barbadilla A, Ruiz A (2000) Effect of inversion polymorphism on the neutral nucleotide variability of linked chromosomal regions in Drosophila. Genetics 155:685–698

    PubMed  CAS  Google Scholar 

  • Navarro A, Marqués-Bonet T, Barton NH (2003) Response to comment on “Chromosomal speciation and molecular divergence-accelerated evolution in rearranged chromosomes”. Science 302:988

    Article  CAS  Google Scholar 

  • Noor MAF, Grams KL, Bertucci LA, Reiland J (2001) Chromosomal inversions and the reproductive isolation of species. Proc Natl Acad Sci USA 98:12084–12088

    Article  PubMed  CAS  Google Scholar 

  • Noor MAF, Garfield DA, Schaeffer SW, Machado CA (2007) Divergence between the Drosophila pseudoobscura and D. persimilis genome sequences in relation to chromosomal inversions. Genetics 177:1417–1428

    Article  PubMed  CAS  Google Scholar 

  • Orr HA (1995) The population genetics of speciation: the evolution of hybrid incompatibilities. Genetics 139:1805–1813

    PubMed  CAS  Google Scholar 

  • Palopoli MF, Wu C-I (1994) Genetics of hybrid male sterility between Drosophila sibling species: a complex web of epistasis is revealed in interspecific studies. Genetics 138:329–341

    PubMed  CAS  Google Scholar 

  • Rieseberg LH (2001) Chromosomal arrangements and speciation. Trends Ecol Evol 16:351–358

    Article  PubMed  Google Scholar 

  • Rieseberg LH, Willis JH (2007) Plant speciation. Science 317:910–914

    Article  PubMed  CAS  Google Scholar 

  • Rieseberg LH, Whitton J, Gardner K (1999) Hybrid zones and the genetic architecture of a barrier to gene flow between two sunflower species. Genetics 152:713–727

    PubMed  CAS  Google Scholar 

  • Schaeffer SW, Anderson WW (2005) Mechanisms of genetic exchange within the chromosomal inversions of Drosophila pseudoobscura. Genetics 171:1729–1739

    Article  PubMed  CAS  Google Scholar 

  • Shuker DM, Underwood K, King TM, Butlin RK (2005) Patterns of male sterility in a grasshopper hybrid zone imply accumulation of hybrid incompatibilities without selection. Proc R Soc B Biol Sci 272:2491–2497

    Article  Google Scholar 

  • Strasburg JL, Scotti-Saintagne C, Scotti I, Lai Z, Rieseberg LH (2009) Genomic patterns of adaptive divergence between chromosomally differentiated sunflower species. Mol Biol Evol 26:1341–1355

    Article  PubMed  CAS  Google Scholar 

  • Trickett AJ, Butlin RK (1994) Recombination suppressors and the evolution of new species. Heredity 73:339–345

    Article  PubMed  Google Scholar 

  • White MJD (1978) Modes of speciation. Freeman, San Fransisco

    Google Scholar 

  • Yatabe Y, Kane NC, Scotti-Santagne C, Rieseberg LH (2007) Rampant gene exchange across a strong reproductive barrier between the annual sunflowers, Helianthus annuus and H. petiolaris. Genetics 175:1883–1893

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Thank you to Professor Roger Butlin for providing supervision during the writing of an earlier version of this manuscript as an undergraduate dissertation at the University of Sheffield, as well as for subsequent helpful discussions and advice, and to two anonymous reviewers for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Charles Jackson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, B.C. Recombination-suppression: how many mechanisms for chromosomal speciation?. Genetica 139, 393–402 (2011). https://doi.org/10.1007/s10709-011-9558-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-011-9558-0

Keywords