Skip to main content
Log in

The evolutionary history of mariner-like elements in Neotropical drosophilids

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The evolutionary history of mariner-like elements (MLEs) in 49 mainly Neotropical drosophilid species is described. So far, the investigations about the distribution of MLEs were performed mainly using hybridization assays with the Mos1 element (the first mariner active element described) in a widely range of drosophilid species and these sequences were found principally in species that arose in Afrotropical and Sino-Indian regions. Our analysis in mainly Neotropical drosophilid species shows that twenty-three species presented MLEs from three different subfamilies in their genomes: eighteen species had MLEs from subfamily mellifera, fifteen from subfamily mauritiana and three from subfamily irritans. Eleven of these species exhibited elements from more than one subfamily in their genome. In two subfamilies, the analyzed coding region was uninterrupted and contained conserved catalytic motifs. This suggests that these sequences were probably derived from active elements. The species with these putative active elements are Drosophila mediopunctata and D. busckii for the mauritiana subfamily, and D. paramediostriata for the mellifera subfamily. The phylogenetic analysis of MLE, shows a complex evolutionary pattern, exhibiting vertical transfer, stochastic loss and putative events of horizontal transmission occurring between different Drosophilidae species, and even those belonging to more distantly related taxa such as Bactrocera tryoni (Tephritidae family), Sphyracephala europaea (Diopsoidea superfamily) and Buenoa sp. (Hemiptera order). Moreover, our data show that the distribution of MLEs is not restricted to Afrotropical and Sino-Indian species. Conversely, these TEs are also widely distributed in drosophilid species arisen in the Neotropical region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21(9):2104–2105. doi:10.1093/bioinformatics/bti263

    Article  PubMed  CAS  Google Scholar 

  • Augé-Gouillou C, Bigot Y, Pollet N, Hamelin M, Meunierrotival M, Periquet G (1995) Human and other mammalian genomes contain transposons of the mariner family. FEBS Letters 368:541–546. doi:10.1016/0014-5793(95)00735-R

    Article  PubMed  Google Scholar 

  • Augé-Gouillou C, Bigot Y, Periquet G (1999) Mariner-like sequences are present in the genome of the fruitfly, Drosophila melanogaster. J Evol Biol 12:742–745. doi:10.1046/j.1420-9101.1999.00068.x

    Article  Google Scholar 

  • Augé-Gouillou C, Notareschi-Leroy H, Abad P, Periquet G, Bigot Y (2000) Phylogenetic analysis of the functional domains of mariner-like element (MLE) transposases. Mol Gen Genetics 264(4):506–513. doi:10.1007/s004380000334

    Article  Google Scholar 

  • Biedler J, Qi Y, Holligan D, della Torre A, Wessler S, Tu Z (2003) Transposable element (TE) display and rapid detection of TE insertion polymorphism in the Anopheles gambiae species complex. Insect Mol Biol 12(3):211–216. doi:10.1046/j.1365-2583.2003.00403.x

    Article  PubMed  CAS  Google Scholar 

  • Biémont C, Cizeron G (1999) Distribution of transposable elements in Drosophila species. Genetica 105:43–62. doi:10.1023/A:1003718520490

    Article  PubMed  Google Scholar 

  • Brunet F, Godin F, David J, Capy P (1994) The mariner transposable element in the Drosophilidae family. Heredity 73:377–385. doi:10.1038/hdy.1994.185

    Article  PubMed  Google Scholar 

  • Brunet F, Godin F, Bazin C, Capy P (1999) Phylogenetic analysis of Mos1-like transposable elements in the Drosophilidae. J Mol Evol 49:760–768. doi:10.1007/PL00006598

    Article  PubMed  CAS  Google Scholar 

  • Capy P, David JR, Hartl DL (1992) Evolution of transposable element mariner in the Drosophila melanogaster species group. Genetica 86:37–46. doi:10.1007/BF00133709

    Article  PubMed  CAS  Google Scholar 

  • Carr M (2008) Multiple subfamilies of mariner transposable elements are present in stalk-eyed flies (Diptera: Diopsidae). Genetica 132:113–122. doi:10.1007/s10709-007-9157-2

    Article  PubMed  Google Scholar 

  • Castro J, Setta N, Carareto CM (2006) Distribution and insertion numbers of transposable elements in species of the Drosophila saltans group. Gen Mol Biol 29:384–390. doi:10.1590/S1415-47572006000200029

    Google Scholar 

  • Claudianos C, Brownlie R, Russel R, Oakeshott J, Whyard S (2002) maT––a clade of transposon between mariner and Tc1. Mol Biol Evol 19:2101–2109

    PubMed  CAS  Google Scholar 

  • De Oliveira LVF, Wallau GD, Loreto ELS (2009) Isolation of high quality DNA: a protocol combining “rennet” and glass milk. Electronic J Biotechnol 12(2):1–6. doi:10.2225/vol12-issue2-fulltext-4

    Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. doi:10.1186/1471-2105-5-113

    Article  PubMed  CAS  Google Scholar 

  • Feschotte C, Pritham E (2007) DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41:331–368. doi:10.1146/annurev.genet.40.110405.090448

    Article  PubMed  CAS  Google Scholar 

  • Finnegan DJ (1989) Eukaryotic transposable elements and genome evolution. Trends Genet 5:103–107. doi:10.1016/0168-9525(89)90039-5

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Fernàndez J, Bayascas-Ramírez J, Marfany G, Muñoz-Mármol A, Casali A, Baguñà J, Saló E (1995) High copy number of highly similar mariner-like transposons in planarian (Platyhelminthe): evidence for a trans-phyla horizontal transfer. Mol Biol Evol 12:421–431

    PubMed  Google Scholar 

  • Gaunt MW, Miles MA (2002) An insect molecular clock dates the origin of the insects and accords with palaeontological and biogeographic landmarks. Mol Biol Evol 19(5):748–761

    PubMed  CAS  Google Scholar 

  • Germanos E, Mota NR, Loreto EL (2006) Transposable elements from the mesophragmatica group of Drosophila. Gen Mol Biol 746:741–746. doi:10.1590/S1415-47572006000400026

    Google Scholar 

  • Gilbert C, Schaack S, Pace JK II, Brindley PJ, Feschotte C (2010) A role for host-parasite interactions in the horizontal transfer of transposons across phyla. Nature 464:1347–1350. doi:10.1038/nature08939

    Article  PubMed  CAS  Google Scholar 

  • Graur D, Li W-H (2000) Fundamentals of molecular evolution, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Hatadani LM, McInerney JO, Medeiros HF, Junqueira ACM, Azeredo-Espin AM, Klaczko LB (2009) Molecular phylogeny of the Drosophila tripunctata and closely related species groups (Diptera, Drosophilidae). Mol Phyl Evol 51:595–600. doi:10.1016/j.ympev.2009.02.022

    Article  CAS  Google Scholar 

  • Hotopp JCD, Clark ME, Oliveira DCDG, Foster JM, Fischer P, Torres MCM, Giebel JD, Kumar N, Ishmael N, Wang S, Ingram J, Nene RV, Shepard J, Tomkins J, Richards S, Spiro DJ, Ghedin E, Slatko BE, Tettelin H, Werren JH (2007) Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317:1753–1756. doi:10.1126/science.1142490

    Article  Google Scholar 

  • Houck MA, Clark JB, Peterson KR, Kidwell MG (1991) Possible horizontal transfer of Drosophila genes by the mite Proctolaelaps regalis. Science 253:1125–1129. doi:10.1126/science.1653453

    Article  PubMed  CAS  Google Scholar 

  • Jacobson JW, Medhora MM, Hartl DL (1986) Molecular structure of a somatically unstable transposable element in Drosophila. PNAS 83:8684–8688

    Article  PubMed  CAS  Google Scholar 

  • Labandeira CC (2005) The evolutionary biology of flies. In: Yeates DK, Wiegmann M (eds) Fossil history and evolutionary ecology of Diptera and their associations with plants. The evolutionary biology of flies. Columbia University Press, New York, pp 217–274

    Google Scholar 

  • Laha T, Loukas A, Wattanasatitarpa S, Somprakhon J, Kewgrai N, Sithithaworn P, Kaewkes S, Mitreva M, Brindley PJ (2007) The bandit, a new DNA Transposon from a hookworm—possible horizontal genetic transfer between host and parasite. PLoS Negl Trop Dis 1(1):e35. doi:10.1371/journal.pntd.0000035

    Article  PubMed  Google Scholar 

  • Lampe DJ, Witherspoon DJ, Soto-Adames FN, Robertson H (2003) Recent horizontal transfer of mellifera subfamily mariner transposons into insect lineages representing four different orders shows that selection acts only during horizontal transfer. Mol Biol Evol 20:554–562. doi:10.1093/molbev/msg069

    Article  PubMed  CAS  Google Scholar 

  • Librado P, Rojas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11):1451–1452. doi:10.1093/bioinformatics/btp187

    Article  PubMed  CAS  Google Scholar 

  • Lockton S, Ross-Ibarra J, Gaut BS (2008) Demography and weak selection drive patterns of transposable element diversity in natural populations of Arabidopsis lyrata. PNAS 105(37):13965–13970. doi:10.1073/pnas.0804671105

    Article  PubMed  CAS  Google Scholar 

  • Lohe A, Moriyama E, Lidholm D, Hartl D (1995) Horizontal transmission, vertical inactivation, and stochastic loss of mariner-like transposable elements. Mol Biol Evol 12:62–72

    PubMed  CAS  Google Scholar 

  • Loreto E, Basso Da Silva L, Zaha A, Valente V (1998) Distribution of transposable elements in neotropical species of Drosophila. Genetica 101:153–165. doi:10.1023/A:1018381104700

    Article  CAS  Google Scholar 

  • Loreto ELS, Carareto CM, Capy P (2008) Revisiting horizontal transfer of transposable elements in Drosophila. Heredity 100:545–554. doi:10.1038/sj.hdy.6801094

    Article  PubMed  CAS  Google Scholar 

  • Ludwig A, Loreto ELS (2008) Multiple invasions of Errantivirus in the genus Drosophila. Insect Mol Biol 17(2):113–124. doi:10.1111/j.1365-2583.2007.00787.x

    Article  PubMed  CAS  Google Scholar 

  • Markow TA, O`Grady PM (2006) DROSOPHILA: a guide to species identification and use. Elservier, UK, p 259

    Google Scholar 

  • Maruyama K, Hartl DL (1991a) Evolution of the transposable element mariner in drosophila species. Genetics 128:319–329

    PubMed  CAS  Google Scholar 

  • Maruyama K, Hartl DL (1991b) Evidence for inter-specific transfer of the transposable element mariner between Drosophila and Zaprionus. J Mol Evol 33:514–524

    Article  PubMed  CAS  Google Scholar 

  • Medhora MM, MacPeek AH, Hartl DL (1988) Excision of the Drosophila transposable element mariner: identification and characterization of the Mos factor. EMBO J 7:2185–2189

    PubMed  CAS  Google Scholar 

  • Morton BR (1993) Chloroplast DNA codon use: evidence for selection at the psbA locus based on tRNA availability. J Mol Evol 37:273–280. doi:10.1007/BF00175504

    Article  PubMed  CAS  Google Scholar 

  • Mota NR, Ludwig A, da Silva Valente VL, Loreto ELS (2009) harrow: new Drosophila hAT transposons involved in horizontal transfer. Insect Mol Biol 19(2):217–228. doi:10.1111/j.1365-2583.2009.00977.x

    Article  PubMed  Google Scholar 

  • Muños-Lopes M, Siddique A, Bischerour J, Lorite P, Chalmers R, Palomeque T (2008) Transposition of Mboumar-9: identification of a new naturally active mariner-family transposon. J Mol Biol 382:567–572. doi:10.1016/j.jmb.2008.07.044

    Article  Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    PubMed  CAS  Google Scholar 

  • Néron B, Ménager H, Maufrais C, Joly N, Maupetit J, Letort S, Carrere S, Tuffery P, Letondal C (2009) Mobyle: a new full web bioinformatics framework. Bioinformatics 25(22):3005–3011. doi:10.1093/bioinformatics/btp493

    Article  PubMed  Google Scholar 

  • Nicholas KB, Nicholas HB (1997) GeneDoc: a tool for editing and annotating multiple sequences alignments. Distributed by the author

  • O’Brochta DA, Stosic CD, Pilitt K, Subramanian RA, Hice RH, Atkinson PW (2009) Transpositionally active episomal hAT elements. BMC Mol Biol 10:108. doi:10.1186/1471-2199-10-108

    Article  PubMed  Google Scholar 

  • Piskurek O, Okada N (2007) Poxviruses as a possible vectors for horizontal transfer of retrotransposons from reptiles to mammals. PNAS 104(29):12046–12051. doi:10.1073/pnas.0700531104

    Article  PubMed  CAS  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14(9):817–818

    Article  PubMed  CAS  Google Scholar 

  • Ren X, Park Y, Miller T (2006) Intact mariner-like element in tobacco budworm, Heliothis virescens (Lepidoptera: Noctuidae). Insect Mol Biol 15:743–748. doi:10.1111/j.1365-2583.2006.00673.x

    Article  PubMed  CAS  Google Scholar 

  • Robe LJ, Valente VLS, Budnik M, Loreto ELS (2005) Molecular phylogeny of the subgenus Drosophila (Diptera, Drosophilidae) with an emphasis on neotropical species and groups: a nuclear versus mitochondrial gene approach. Mol Phyl Evol 36:623–640. doi:10.1016/j.ympev.2005.05.005

    Article  CAS  Google Scholar 

  • Robe LJ, Loreto ELS, Valente VLS (2010a) Radiation of the Drosophila subgenus (Drosophilidae, Diptera) in the Neotropics. J Zool Syst Evol Res 48:310–321. doi:10.1111/j.1439-0469.2009.00563.x

    Article  Google Scholar 

  • Robe LJ, Valente VL, Loreto EL (2010b) Phylogenetic relationships and macro-evolutionary patterns within the Drosophila tripunctata “radiation” (Diptera: Drosophilidae). Genetica 138(7):725–735. doi:10.1007/s10709-010-9453-0

    Article  PubMed  Google Scholar 

  • Robertson HM (1993) The mariner transposable element is widespread in insects. Nature 362:241–245. doi:10.1038/362241a0

    Article  PubMed  CAS  Google Scholar 

  • Robertson HM (1997) Multiple mariner transposons in flatworms and hydras are related to those of insects. J Heredity 88:195–201

    CAS  Google Scholar 

  • Robertson HM, Lampe DJ (1995) Recent horizontal transfer of a mariner transposable element among and between Diptera and Neuroptera. Mol Biol Evol 12:850–862

    PubMed  CAS  Google Scholar 

  • Robertson HM, MacLeod EG (1993) Five major subfamilies of mariner transposable elements in insects, including the Mediterranean fruit fly, and related arthropods. Insect Mol Biol 2:125–139. doi:10.1111/j.1365-2583.1993.tb00132.x

    Article  PubMed  CAS  Google Scholar 

  • Robertson HM, Soto-Adames FN, Walden KKO, Avancini RMP, Lampe DJ (2002) Horizontal Gene Transfer. In: Syvanen M, Kado CI (eds) The mariner transposons of animals: horizontally jumping genes, 2rd edn. Academic Press, San Diego, pp 173–187

    Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. doi:10.1093/bioinformatics/btg180

    Article  PubMed  CAS  Google Scholar 

  • Rouault J, Casse N, Chénais B, Hua-Van A, Capy P (2009) Automatic classification within families of transposable elements: application to the mariner family. Gene 448:227–232. doi:10.1016/j.gene.2009.08.009

    Article  PubMed  CAS  Google Scholar 

  • Sanguinetti CJ, Dias Neto E, Simpson AJG (1994) Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17:915–919

    Google Scholar 

  • Schaack S, Choi E, Lynch M, Pritham EJ (2010) DNA transposons and the role of recombination in mutation accumulation in Daphnia pulex. Genom Biol 11:R46. doi:10.1186/gb-2010-11-4-r46

    Article  Google Scholar 

  • Setta N, Costa APP, Lopes FR, Sluys MV, Carareto CMA (2007) Transposon display supports transpositional activity of P elements in species of the saltans group of Drosophila. J Genet 86(1):37–43. doi:10.1007/s12041-007-0005-z

    Article  PubMed  Google Scholar 

  • Sharp PM, Li WH (1989) On the rate of DNA sequences evolution in Drosophila. J Mol Evol 28:398–402. doi:10.1007/BF02603075

    Article  PubMed  CAS  Google Scholar 

  • Silva JC, Bastida F, Bidwell SL, Johnson PJ, Carlton JM (2005) A potentially functional mariner transposable element in the protist Trichomonas vaginalis. Mol Biol Evol 22:126–134. doi:10.1093/molbev/msh260

    Article  PubMed  CAS  Google Scholar 

  • Sinzelle L, Chesneau A, Bigot Y, Mazabraud A, Pollet N (2006) The mariner transposons belonging to the irritans subfamily were maintained in chordate genomes by vertical transmission. J Mol Evol 62:53–65. doi:10.1007/s00239-005-0013-7

    Article  PubMed  CAS  Google Scholar 

  • Staden R (1996) The Staden sequence analysis package. Mol Biotechnol 5:233–241

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (2003) PAUP: phylogenetic analysis using parsimony (and others methods). Version 4. Sinauer Associates, Massachusetts

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi:10.1093/molbev/msm092

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Van den Broeck D, Maes T, Sauer M, Zethof J, De Keukeleire P, D’Hauw M et al (1998) Transposon display identifies individual transposable elements in high copy number lines. Plant J 13:121–129. doi:10.1046/j.1365-313X.1998.00004.x

    PubMed  Google Scholar 

  • Volff JN (2006) Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. Bioessays 28:913–922. doi:10.1002/bies.20452

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982. doi:10.1038/nrg2165

    Article  PubMed  CAS  Google Scholar 

  • Wright F (1990) The ‘effective number of codons’ used in a gene. Gene 87:23–29. doi:10.1016/0378-1119(90)90491-9

    Article  PubMed  CAS  Google Scholar 

  • Yoshiyama M, Tu Z, Kainoh Y, Honda H, Shono T, Kimura K (2001) Possible horizontal transfer of a transposable element from host to parasitoid. Mol Biol Evol 18:1952–1958

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Monica L Blauth, Dr. Yanina Panzera and Dr. Lizandra J Robe for valuable suggestion and to Dr. Alfredo Ruiz and Dr. Bernardo de Carvalho for the some Drosophila samples. This work was supported by grants from CNPq and CAPES- COFECUB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elgion L. S. Loreto.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallau, G.L., Hua-Van, A., Capy, P. et al. The evolutionary history of mariner-like elements in Neotropical drosophilids. Genetica 139, 327–338 (2011). https://doi.org/10.1007/s10709-011-9552-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-011-9552-6

Keywords

Navigation