Skip to main content

Advertisement

Log in

Microsatellite analysis supports mitochondrial phylogeography of the hellbender (Cryptobranchus alleganiensis)

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

We investigated genetic diversity of the hellbender (Cryptobranchus alleganiensis) throughout its range in the eastern US using nuclear markers and compared our results to a previously published mitochondrial analysis. A variety of nuclear markers, including protein-coding gene introns and microsatellites were tested but only microsatellites were variable enough for population level analysis. Microsatellite loci showed moderate among population sharing of alleles, in contrast to the reciprocal monophyly exhibited by mitochondrial DNA. However, analyses using F-statistics and Bayesian clustering algorithms showed considerable population subdivision and clustered hellbender populations into the same major groups as the mtDNA. The microsatellites combined with the mtDNA data suggest that gene flow is severely restricted or non-existent among eight major groups, and potentially among populations (rivers) within groups. The combined mtDNA and microsatellite data suggest that the currently recognized hellbender subspecies are paraphyletic. We suggest that the eight independent groups identified in our study should be managed as such, rather than basing conservation decisions on the two named subspecies of hellbender.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucl Acids Res 25:4692

    Article  CAS  PubMed  Google Scholar 

  • Beebee TJC (2005) Conservation genetics of amphibians. Heredity 95:423–427

    Article  CAS  PubMed  Google Scholar 

  • Briggler JT, Ettling J, Wanner M, Schuette C, Duncan M (2007) Cryptobranchus alleganiensis (hellbender). Chytrid fungus. Herpetol Rev 38(2):174

    Google Scholar 

  • Chan KMA, Levin SE (2005) Leaky prezygotic isolation and porous genomes: rapid introgression of maternally inherited DNA. Evolution 59(4):720–729

    CAS  PubMed  Google Scholar 

  • Culver M, Menotti-Raymond MA, O’Brien SJ (2001) Patterns of size homoplasy at 10 microsatellite loci in pumas (Puma concolor). Mol Biol Evol 18(6):1151–1156

    CAS  PubMed  Google Scholar 

  • DeSalle R, Amato G (2004) The expansion of conservation genetics. Nat Rev Genet 5(9):702–712

    Article  CAS  PubMed  Google Scholar 

  • Dolman G, Phillips B (2004) Single copy nuclear DNA markers characterized for comparative phylogeography in Australian wet tropics rainforest skinks. Mol Ecol Notes 4(2):185–187

    Article  CAS  Google Scholar 

  • Earnhardt JM (1999) Reintroduction programmes: genetic trade-offs for populations. Anim Conserv 2:279–286

    Article  Google Scholar 

  • Edwards SV, Beerli P (2000) Perspective: gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. Evolution 54(6):1839–1854

    CAS  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131(2):479–491

    CAS  PubMed  Google Scholar 

  • Gharrett AJ, Smoker WW, Reisenbichler RR, Taylor SG (1999) Outbreeding depression in hybrids between odd-and even-broodyear pink salmon. Aquaculture 173(1–4):117–129

    Article  Google Scholar 

  • Grobman AB (1943) Notes on salamanders with the description of a new species of Cryptobranchus. Occas Pap Univ Mich Mus Zool 470:1–13

    Google Scholar 

  • Guimond RW, Hutchison VH (1973) Aquatic respiration: an unusual strategy in the hellbender Cryptobranchus alleganiensis alleganiensis (Daudin). Science 182(4118):1263–1265

    Article  CAS  PubMed  Google Scholar 

  • Hedrick PW (2001) Conservation genetics: where are we now? Trends Ecol Evol 16(11):629–636

    Article  Google Scholar 

  • Houlahan JE, Findlay CS, Schmidt BR, Meyer AH, Kuzmin SL (2000) Quantitative evidence for global amphibian population declines. Nature 404(6779):752–755

    Article  CAS  PubMed  Google Scholar 

  • Hudson RR, Turelli M (2003) Stochasticity overrules the three-times rule: genetic drift, genetic draft, and coalescence times for nuclear loci versus mitochondrial DNA. Evolution 57(1):182–190

    PubMed  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Johnson JR, KM Faries, JJ Rabenold, RS Crowhurst, JT Briggler, JB Koppelman and LS Eggert (2009). Polymorphic microsatellite loci for studies of the Ozark hellbender (Cryptobranchus alleganiensis bishopi). Conserv Genet, online first doi:10.1007/s10592-009-9818-z

  • Kingman JFC (1982) On the genealogy of large populations. J Appl Probab 19A:27–43

    Article  Google Scholar 

  • Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17(4):183–189

    Article  Google Scholar 

  • Mayasich J, Granmaison D, Phillips C (2003) Eastern hellbender status assessment report. Nat Resour Res Inst Tech Rep 9:1–41

    Google Scholar 

  • Merkle DA, Guttman SI, Nickerson MA (1977) Genetic uniformity throughout the range of the hellbender, Cryptobranchus alleganiensis. Copeia 1977(3):549–553

    Article  Google Scholar 

  • Moore WS (1995) Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees. Evolution 49(4):718–726

    Article  Google Scholar 

  • Moritz C (2002) Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst Biol 51(2):238–254

    Article  PubMed  Google Scholar 

  • Nickerson MA, Briggler JT (2007) Harvesting as a factor in population decline of a long-lived salamander; the Ozark hellbender, Cryptobranchus alleganiensis bishopi Grobman. Appl Herpetol 4(3):207–216

    Article  Google Scholar 

  • Nickerson MA, Mays CE (1973) A study of the Ozark hellbender Cryptobranchus alleganiensis bishopi. Ecology 54(5):1164–1165

    Article  Google Scholar 

  • Peakall R and P Smouse (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes, Blackwell Synergy 6: 288–295

    Google Scholar 

  • Peterson CL (1987) Movement and catchability of the hellbender, Cryptobranchus alleganiensis. J Herpetol 21(3):197–204

    Article  Google Scholar 

  • Peterson CL, Ingersol CA, Wilkinson RF (1989) Winter breeding of Cryptobranchus alleganiensis bishopi in Arkansas. Copeia 1989:1031–1035

    Article  Google Scholar 

  • Phillips CA, Humphries WJ (2005) Cryptobranchus alleganiensis (Daudin, 1803). In: Lanoo M (ed) Amphibian declines: The conservation status of United States species, University of California Press, Berkeley, CA, pp 648–651

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17(1):230–237

    Article  Google Scholar 

  • Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4(1):137–138

    Article  Google Scholar 

  • Routman E (1993) Mitochondrial DNA variation in Cryptobranchus alleganiensis, a salamander with extremely low allozyme diversity. Copeia 1993(2):407–416

    Article  Google Scholar 

  • Routman E, Wu R, Templeton AR (1994) Parsimony, molecular evolution, and biogeography: the case of the North American giant salamander. Evolution 48(6):1799–1809

    Article  Google Scholar 

  • Sabatino SJ, Routman EJ (2009) Phylogeography and conservation genetics of the hellbender salamander (Cryptobranchus alleganiensis). Conserv Genet 10:1235–1246. doi:10.1007/s10592-008-9655-5

    Article  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin version 2.000. A software for population genetics data analysis. Genetics and biometry laboratory, department of anthropology and ecology. University of Geneva, Geneva, Switzerland

    Google Scholar 

  • Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation and management. Trends Ecol Evol 22(1):25–33

    Article  PubMed  Google Scholar 

  • Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306(5702):1783–1786

    Article  CAS  PubMed  Google Scholar 

  • Templeton AR, Shaw K, Routman E, Davis SK (1990) The genetic consequences of habitat fragmentation. Ann Missouri Bot Gard 77:13–27

    Article  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4(3):535–538

    Article  Google Scholar 

  • Wheeler BA, Prosen E, Mathis A, Wilkinson RF (2003) Population declines of a long-lived salamander: a 20+-year study of hellbenders, Cryptobranchus alleganiensis. Biol Conserv 109(1):151–156

    Article  Google Scholar 

  • Williams RD, Gates JE, Hocutt CH, Taylore GJ (1981) The hellbender: a nongame species in need of management. Wildl Soc Bull 9(2):94–100

    Google Scholar 

  • Wright S (1968) Evolution and the genetic of populations. University of Chicago Press, Illinois

    Google Scholar 

Download references

Acknowledgments

We thank Tammy Lim for help in the field. Jeff Briggler provided specimens from the Eleven Point River. This research was partially supported by a grant from the National Park Service (J8C07070005) to EJR. MT was supported by a National Institutes of Health RISE Fellowship (5R25-GMO59298-10). Many thanks to Victoria Grant for facilitation of funding. Lori Eggert provided microsatellite advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Routman.

Appendices

Appendix 1

See Table 4

Table 4 Primer sequences (5′–3′) for non-microsatellite autosomal genes, with references and GenBank accession numbers for the original loci

Appendix 2

See Table 5

Table 5 Characterization of non-microsatellite autosomal loci for C. alleganiensis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tonione, M., Johnson, J.R. & Routman, E.J. Microsatellite analysis supports mitochondrial phylogeography of the hellbender (Cryptobranchus alleganiensis). Genetica 139, 209–219 (2011). https://doi.org/10.1007/s10709-010-9538-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-010-9538-9

Keywords