Skip to main content

The nature of interactions that contribute to postzygotic reproductive isolation in hybrid copepods

Abstract

Deleterious interactions within the genome of hybrids can lower fitness and result in postzygotic reproductive isolation. Understanding the genetic basis of these deleterious interactions, known as Dobzhansky-Muller incompatibilities, is the subject of intense current study that seeks to elucidate the nature of these deleterious interactions. Hybrids from crosses of individuals from genetically divergent populations of the intertidal copepod Tigriopus californicus provide a useful model in which to study Dobzhansky-Muller incompatibilities. Studies of the basis of postzygotic reproductive isolation in this species have revealed a number of patterns. First, there is evidence for a breakdown in genomic coadaptation between mtDNA-encoded and nuclear-encoded proteins that can result in a reduction in hybrid fitness in some crosses. It appears from studies of the individual genes involved in these interactions that although this coadaptation could lead to asymmetries between crosses, patterns of genotypic viabilities are not often consistent with simple models of genomic coadaptation. Second, there is a large impact of environmental factors on these deleterious interactions suggesting that they are not strictly intrinsic in nature. Temperature in particular appears to play an important role in determining the nature of these interactions. Finally, deleterious interactions in these hybrid copepods appear to be complex in terms of the number of genetic factors that interact to lead to reductions in hybrid fitness. This complexity may stem from three or more factors that all interact to cause a single incompatibility or the same factor interacting with multiple other factors independently leading to multiple incompatibilities.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Barbash DA, Roote J, Ashburner M (2000) The Drosophila melanogaster hybrid male rescue gene causes inviability in male and female species hybrids. Genetics 154:1747–1771

    PubMed  CAS  Google Scholar 

  • Bomblies K, Lempe J, Epple P, Warthmann N, Lanz C, Dangl JL, Weigel D (2007) Autoimmune response as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants. PLoS Biol 5:1962–1972

    Article  CAS  Google Scholar 

  • Bordenstein SR, Drapeau MD (2001) Genotype-by-environment interaction and the Dobzhansky-Muller model of postzygotic isolation. J Evol Biol 14:490–501

    Article  CAS  Google Scholar 

  • Brideau NJ, Flores HA, Wang J, Maheshwari S, Wang X, Barbash DA (2006) Two Dobzhansky-Muller genes interact to cause hybrid lethality in Drosophila. Science 314:1292–1295

    PubMed  Article  CAS  Google Scholar 

  • Burton RS (1987) Differentiation and integration of the genome in populations of Tigriopus californicus. Evolution 41:504–513

    Article  Google Scholar 

  • Burton RS (1990a) Hybrid breakdown in developmental time in the copepod Tigriopus californicus. Evolution 44:1814–1822

    Article  Google Scholar 

  • Burton RS (1990b) Hybrid breakdown in physiological response: a mechanistic approach. Evolution 44:1806–1813

    Article  Google Scholar 

  • Burton RS (1997) Genetic evidence for long term persistence of marine invertebrate populations in an ephemeral environment. Evolution 51:993–998

    Article  Google Scholar 

  • Burton RS (1998) Intraspecific phylogeography across the Point Conception biogeographic boundary. Evolution 52:734–745

    Article  Google Scholar 

  • Burton RS, Feldman MW, Curtsinger JW (1979) Population genetics of Tigriopus californicus Copepoda: Harpacticoida: I Population structure along the central California coast. Mar Ecol Prog Series 1:29–39

    Article  CAS  Google Scholar 

  • Burton RS, Ellison CK, Harrison JS (2006) The sorry state of F2 hybrids: Consequences of rapid mitochondrial DNA evolution in allopatric populations. Am Nat 168:S14–S24

    PubMed  Article  Google Scholar 

  • Cabot EL, Davis AW, Johnson NA, Wu C–I (1994) Genetics of reproductive isolation in the Drosophila simulans clade: Complex epistasis underlying hybrid male sterility. Genetics 136:175–189

    Google Scholar 

  • Chou J-Y, Hung Y-S, Lin K-H, Lee H-Y, Leu J-Y (2010) Multiple molecular mechanisms cause reproductive isolation between three yeast species. PLoS Biol 8:e1000432

    PubMed  Article  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Assoc, Sunderland

    Google Scholar 

  • Coyne JA, Simeonidis S, Rooney P (1998) Relative paucity of genes causing inviability in hybrids between Drosophila melanogaster and D simulans. Genetics 150:1091–1103

    PubMed  CAS  Google Scholar 

  • Davis AW, Noonburg EG, Wu C–I (1994) Evidence for complex genic interactions between conspecific chromosomes underlying hybrid female sterility in the Drosophila simulans clade. Genetics 137:191–199

    PubMed  CAS  Google Scholar 

  • Demuth JP, Wade MJ (2007) Population differentiation in the beetle Tribolium castaneum. I. Genetic architecture. Evolution 61:494–509

    PubMed  Article  Google Scholar 

  • Dethier MN (1980) Tidepools as refuges: predation and the limits of the Harpacticoid copepod Tigriopus californicus (Baker). J Exp Mar Biol Ecol 42:99–111

    Article  Google Scholar 

  • Dobzhansky T (1936) Studies on hybrid sterility. II. Localization of sterility factors in Drosophila pseudoobscura hybrids. Genetics 21:113–135

    PubMed  CAS  Google Scholar 

  • Dybdahl MF (1994) Extinction, recolonization, and the genetic structure of tidepool copepod populations. Evol Ecol 8:113–124

    Article  Google Scholar 

  • Edmands S (1999) Heterosis and outbreeding depression in interpopulation crosses spanning a wide range of divergence. Evolution 53:1757–1768

    Article  Google Scholar 

  • Edmands S (2001) Phylogeography of the intertidal copepod Tigriopus californicus reveals substantially reduced population differentiation at northern latitudes. Mol Ecol 10:1743–1750

    PubMed  Article  CAS  Google Scholar 

  • Edmands S, Burton RS (1999) Cytochrome C oxidase activity in interpopulation hybrids of a marine copepod: a test for nuclear-nuclear or nuclear-cytoplasmic coadaptation. Evolution 53:1972–1978

    Google Scholar 

  • Edmands S, Deimler JK (2004) Local adaptation, intrinsic coadaptation and the effects of environmental stress on interpopulation hybrids in the copepod Tigriopus californicus. J Exp Mar Biol Ecol 303:183–196

    Article  Google Scholar 

  • Edmands S, Harrision JS (2003) Molecular and quantitative trait variation within and among populations of the intertidal copepod Tigriopus californicus. Evolution 57:2277–2285

    PubMed  CAS  Google Scholar 

  • Edmands S, Freaman HV, Harrison JS, Timmerman CC (2005) Genetic consequences of many generations of hybridization between divergent copepod populations. J Heredity 96:114–123

    Article  CAS  Google Scholar 

  • Edmands S, Northrup SL, Hwang AS (2009) Maladapted gene complexes within populations of the intertidal copepod Tigriopus californius. Evolution 63:2184–2192

    PubMed  Article  CAS  Google Scholar 

  • Ellison CK, Burton RS (2006) Disruption of mitochondrial function in interpopulation hybrids of Tigriopus californicus. Evolution 60:1382–1391

    PubMed  CAS  Google Scholar 

  • Ellison CK, Burton RS (2008a) Interpopulation hybrid breakdown maps to the mitochondrial genome. Evolution 62:631–638

    PubMed  Article  Google Scholar 

  • Ellison CK, Burton RS (2008b) Genotype-dependent variation of mitochondrial transcriptional profiles in interpopulation hybrids. Proc Nat Acad Sci USA 105:15831–15836

    PubMed  Article  CAS  Google Scholar 

  • Ellison CK, Burton RS (2010) Cytonuclear conflict in interpopulation hybrids: the role of RNA polymerase in mtDNA transcription and replication. J Evol Biol 23:528–538

    PubMed  Article  CAS  Google Scholar 

  • Ellison CK, Niehuis O, Gadau J (2008) Hybrid breakdown and mitochondrial dysfunction in hybrids of Nasonia parasitoid wasps. J Evol Biol 21:1844–1851

    PubMed  Article  CAS  Google Scholar 

  • Fu YX, Li W-H (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    PubMed  CAS  Google Scholar 

  • Fuller RC (2008) Genetic incompatibilities in killifish and the role of environment. Evolution 62:3056–3068

    PubMed  Article  Google Scholar 

  • Ganz HH, Burton RS (1995) Genetic differentiation and reproductive incompatibility among Baja California populations of the copepod Tigriopus californicus. Marine Biol 123:821–828

    Article  Google Scholar 

  • Harrison JS, Burton RS (2006) Tracing hybrid incompatibilities to single amino acid substitutions. Mol Biol Evol 23:559–564

    PubMed  Article  CAS  Google Scholar 

  • Harrison JS, Edmands S (2006) Chromosomal basis of viability differences in Tigriopus californicus interpopulation hybrids. J Evol Biol 19:2040–2051

    PubMed  Article  CAS  Google Scholar 

  • Johnson NA (2010) Hybrid incompatibility genes: remnants of a genomic battlefield? Trends Genet 26:317–325

    PubMed  Article  CAS  Google Scholar 

  • Kondrashov AS (2003) Accumulation of Dobzhansky-Muller incompatibilities within a spatially structured population. Evolution 57:151–153

    PubMed  Google Scholar 

  • Lee H–Y, Chou J–Y, Cheong L, Chang N–H, Yang S–Y, Leu J–Y (2008) Incompatibility of nuclear and mitochondrial genomes caused hybrid sterility between two yeast species. Cell 135:1065–1073

    PubMed  Article  CAS  Google Scholar 

  • Masly JP, Presgraves DC (2007) High-resolution genome-wide dissection of the two rules of speciation in Drosophila. PLoS Biology 5:1890–1898

    Article  CAS  Google Scholar 

  • Monk CR (1941) Marine harpacticoid copepods from California. Trans Amer Microscop Soc 60:75–99

    Article  Google Scholar 

  • Moyle LC, Nakazato T (2009) Complex epistasis for Dobzhansky-Muller hybrid incompatibility in Solanum. Genetics 181:347–351

    PubMed  Article  Google Scholar 

  • Muller HJ (1942) Isolating mechanisms, evolution, and temperature. Biol Symp 6:71–125

    Google Scholar 

  • Niehuis O, Judson AK, Gadau J (2008) Cytonuclear genic incompatibilities cause increased mortality in male F2 hybrids of Nasonia giraulti and N vitripennis. Genetics 178:413–426

    PubMed  Article  CAS  Google Scholar 

  • Noor MAF, Feder JL (2006) Speciation genetics: evolving approaches. Nat Rev Gen 7:851–861

    Article  CAS  Google Scholar 

  • Orr HA (1995) The population genetics of speciation: the evolution of hybrid incompatibilities. Genetics 139:1805–1813

    PubMed  CAS  Google Scholar 

  • Orr HA, Irving S (2001) Complex epistasis and the genetic basis of hybrid sterility in the Drosophila pseudoobscura Bogota-USA hybridization. Genetics 158:1089–1100

    PubMed  CAS  Google Scholar 

  • Palmer CA, Edmands S (2000) Mate choice in the face of both inbreeding and outbreeding depression in the intertidal copepod Tigriopus californicus. Marine Biol 136:693–698

    Article  Google Scholar 

  • Perez DE, Wu C–I (1995) Further characterization of the Odysseus locus of hybrid sterility in Drosophila: one gene is not enough. Genetics 140:201–206

    PubMed  CAS  Google Scholar 

  • Powlick JJ (1998) Seasonal abundance and population flux of Tigriopus californicus (Copepoda: Harpacticoida) in Barkley sound, British Columbia. J Mar Biol Assoc UK 78:467–481

    Google Scholar 

  • Presgraves DC (2003) A fine-scale genetic analysis of hybrid incompatibilities in Drosophila. Genetics 163:955–972

    PubMed  CAS  Google Scholar 

  • Presgraves DC (2010) The molecular evolutionary basis of species formation. Nature Rev Genet 11:175–180

    PubMed  Article  CAS  Google Scholar 

  • Rand DM, Haney RA, Fry AJ (2004) Cytonuclear coevolution: the genomics of cooperation. Trends Ecol Evol 19:645–653

    PubMed  Article  Google Scholar 

  • Rawson PD, Burton RS (2002) Functional coadaptation between cytochrome c and cytochrome c oxidase within allopatric populations of a marine copepod. Proc Natl Acad Sci USA 99:12955–12958

    PubMed  Article  CAS  Google Scholar 

  • Tang S, Presgraves DC (2009) Evolution of the Drosophila nuclear pore complex results in multiple hybrid incompatibilities. Science 323:779–782

    PubMed  Article  CAS  Google Scholar 

  • Tao Y, Chen S, Hartl DL, Laurie CC (2003) Genetic dissection of hybrid incompatibilities between Drosophila simulans and D mauritiana I differential accumulation of hybrid male sterility effects on the X and autosomes. Genetics 164:1383–1397

    PubMed  CAS  Google Scholar 

  • Turelli M, Moyle LC (2007) Asymmetric postmating isolation: Darwin’s Corollary to Haldane’s rule. Genetics 176:1059–1088

    PubMed  Article  Google Scholar 

  • Wade MJ, Johnson NA, Toquenaga Y (1999) Temperature effects and genotype-by-environment interactions in hybrids: Haldane’s rule in flour beetles. Evolution 53:855–865

    Article  Google Scholar 

  • Welch JJ (2004) Accumulating Dobzhansky-Muller incompatibilities: reconciling theory and data. Evolution 58:1145–1156

    PubMed  Google Scholar 

  • Willett CS (2006) Deleterious epistatic interactions between electron transport system protein-coding loci in the copepod Tigriopus californicus. Genetics 173:1465–1477

    PubMed  Article  CAS  Google Scholar 

  • Willett CS (2008a) No evidence for faster male hybrid sterility in population crosses of an intertidal copepod (Tigriopus californicus). Genetica 133:129–136

    PubMed  Article  Google Scholar 

  • Willett CS (2008b) Significant variation for fitness impacts of ETS loci in hybrids between populations of Tigriopus californicus. J Heredity 99:56–65

    Article  CAS  Google Scholar 

  • Willett CS (2010) Potential fitness tradeoffs for thermal tolerance in the intertidal copepod Tigriopus californicus. Evolution 64:2521–2534

    PubMed  Article  Google Scholar 

  • Willett CS, Berkowitz JN (2007) Viability effects and not meiotic drive cause dramatic departures from Mendelian inheritance for malic enzyme in hybrids of Tigriopus californicus populations. J Evol Biol 20:1196–1205

    PubMed  Article  CAS  Google Scholar 

  • Willett CS, Burton RS (2001) Viability of cytochrome c depends on cytoplasmic background in Tigriopus californicus. Evolution 55:1592–1599

    PubMed  CAS  Google Scholar 

  • Willett CS, Burton RS (2003) Environmental influences on epistatic interactions: viabilities of cytochrome c genotypes in interpopulation crosses. Evolution 57:2286–2292

    PubMed  Google Scholar 

  • Willett CS, Burton RS (2004) Evolution of interacting proteins in the mitochondrial electron transport system in a marine copepod. Mol Biol Evol 21:443–453

    PubMed  Article  CAS  Google Scholar 

  • Willett CS, Ladner JT (2009) Investigations of fine-scale phylogeography in Tigriopus californicus reveal historical patterns of population divergence. BMC Evol 9:139

    Article  Google Scholar 

  • Willett CS. Deleterious interactions and reproductive isolation in the copepod Tigriopus californicus resulting from interchangeable components. Submitted to Heredity

Download references

Acknowledgments

I would like to thank R. Harrison for helping to instill an interest in the genetics of speciation during my studies at Cornell and for being a great mentor. Thanks to B. Normark for organizing this special issue and for comments on this manuscript. C. W. was supported by National Science Foundation grants DEB-0516139 and DEB-0821003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher S. Willett.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Willett, C.S. The nature of interactions that contribute to postzygotic reproductive isolation in hybrid copepods. Genetica 139, 575–588 (2011). https://doi.org/10.1007/s10709-010-9525-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-010-9525-1

Keywords

  • Speciation
  • Hybrid breakdown
  • Dobzhansky-Muller incompatibilities
  • Tigriopus californicus
  • Genomic coadaptation