Skip to main content

Advertisement

Log in

Molecular characterization and evolution of an interspersed repetitive DNA family of oysters

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

When genomic DNA from the European flat oyster Ostrea edulis L. was digested by BclI enzyme, a band of about 150 bp was observed in agarose gel. After cloning and sequencing this band and analysing their molecular characteristics and genomic organization by means of Southern blot, in situ hybridisation, and polymerase chain reaction (PCR) protocols, we concluded that this band is an interspersed highly repeated DNA element, which is related in sequence to the flanking regions of (CT)-microsatellite loci of the species O. edulis and Crassostrea gigas. Furthermore, we determined that this element forms part of a longer repetitive unit of 268 bp in length that, at least in some loci, is present in more than one copy. By Southern blot hybridisation and PCR amplifications—using primers designed for conserved regions of the 150-bp BclI clones of O. edulis—we determined that this repetitive DNA family is conserved in five other oyster species (O. stentina, C. angulata, C. gigas, C. ariakensis, and C. sikamea) while it is apparently absent in C. gasar. Finally, based on the analysis of the repetitive units in these oyster species, we discuss the slow degree of concerted evolution in this interspersed repetitive DNA family and its use for phylogenetic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Boudry P, Heurtebise S, Lapègue S (2003) Mitochondrial and nuclear DNA sequence variation of presumed Crassostrea gigas and C. angulata specimens: a new oyster species in Hong Kong. Aquaculture 228:15–25

    Article  CAS  Google Scholar 

  • Canapa A, Barucca M, Cerioni PN, Olmo E (2000) A satellite DNA containing CENP-B box-like motifs is present in the Antarctic scallop Adamussium colbecki. Gene 247:175–180

    Article  CAS  PubMed  Google Scholar 

  • Carlsson J, Morrison CL, Reece KS (2006) Wild and aquaculture populations of the eastern oyster compared using microsatellites. J Hered 97:595–598

    Article  CAS  PubMed  Google Scholar 

  • Cross I, Vega L, Rebordinos L (2003) Nucleolar organizing regions in Crassostrea angulata: chromosomal location and polymorphism. Genetica 119:65–74

    Article  CAS  PubMed  Google Scholar 

  • Cross I, Díaz E, Sánchez I, Rebordinos L (2005) Molecular and cytogenetic characterization of Crassostrea angulata chromosomes. Aquaculture 247:135–144

    Article  CAS  Google Scholar 

  • Dover G (1982) Molecular drive: a cohesive mode of species evolution. Nature 299:111–117

    Article  CAS  PubMed  Google Scholar 

  • Dover G (1986) Molecular drive in multigene families: how biological novelties arise, spread and are assimilated. Trends Genet 2:159–165

    Article  CAS  Google Scholar 

  • Elder M, Turner J (1995) Concerted evolution of repetitive DNA sequences in eukaryotes. Q Rev Biol 70:297–320

    Article  CAS  PubMed  Google Scholar 

  • El-Sawy M, Deininger P (2005) Tandem insertions of Alu elements. Cytogenet Genome Res 108:58–62

    Article  CAS  PubMed  Google Scholar 

  • Gaffney PM, Pierce JC, Mackinley AG, Titchen DA, Glenn WK (2003) Pearl, a novel family of putative transposable elements in bivalve mollusks. J Mol Evol 56:308–316

    Article  CAS  PubMed  Google Scholar 

  • Graur D, Li WH (1999) Fundamentals of molecular evolution, 2nd edn. Sinauer Associates, Inc., Sunderland, MA

    Google Scholar 

  • Jozefowicz CJ, Ò Foighil D (1998) Phylogenetic analysis of southern hemisphere flat oysters based on partial mitochondrial 16S rDNA gene sequences. Mol Phyl Evol 10:426–435

    Article  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Klinbunga S, Pripue P, Khamnamtong N, Puanglarp N, Tassanakajon A, Jarayabhand P, Hirono I, Aoki T, Menasveta P (2003) Genetic diversity and molecular markers of the tropical abalone (Haliotis asinina) in Thailand. Mar Biotechnol 5:505–517

    Article  CAS  PubMed  Google Scholar 

  • Korringa P (1952) Recent advances in oyster biology. Q Rev Biol 27:266–365

    Article  CAS  PubMed  Google Scholar 

  • Lapègue S, Boutet I, Leitão A, Heurtebise S, Garcia P, Thiriot-Quiévreux C, Boudry P (2002) Trans-Atlantic distribution of a mangrove oyster species revealed by 16S mtDNA and karyological analyses. Biol Bull 202:232–242

    Article  PubMed  Google Scholar 

  • Littlewood DTJ (1994) Molecular phylogenetics of cupped oysters based on partial 28S rRNA gene sequences. Mol Phyl Evol 3:221–229

    Article  CAS  Google Scholar 

  • López-Flores I, de la Herrán R, Garrido-Ramos MA, Boudry P, Ruiz-Rejón C, Ruiz-Rejón M (2004) The molecular phylogeny of oysters based on a satellite DNA related to transposons. Gene 339:181–188

    Article  PubMed  Google Scholar 

  • Luchetti A, Marini M, Mantovani B (2006) Non-concerted evolution of RET76 satellite DNA family in Reticulitermes taxa (Insecta, Isoptera). Genetica 128:123–132

    Article  Google Scholar 

  • Martínez-Lage A, Rodríguez F, González-Tizón A, Prats E, Cornudella L, Méndez J (2002) Comparative analysis of different satellite DNAs in four Mytilus species. Genome 45:922–929

    Article  PubMed  Google Scholar 

  • Meglécz E, Anderson SJ, Bourguet D, Butcher R, Caldas A, Cassel-Lundhagen A, d’Acier AC, Dawson DA, Faure N, Fauvelot C, Franck P, Harper G, Keyghobadi N, Kluetsch C, Muthulakshmi M, Nagaraju J, Patt A, Péténian F, Silvain JF, Wilcock HR (2007) Microsatellite flanking region similarities among different loci within insect species. Insect Mol Biol 16:175–185

    Article  PubMed  Google Scholar 

  • Muchmore ME, Moy GW, Swanson WJ, Vacquier VD (1998) Direct sequencing of genomic DNA for characterization of a satellite DNA in five species of Eastern Pacific abalone. Mol Mar Biol Biotechnol 7:1–6

    CAS  PubMed  Google Scholar 

  • Navajas-Pérez R, de la Herrán R, Jamilena M, Lozano R, Ruiz Rejón C, Ruiz Rejón M, Garrido-Ramos MA (2005) Reduced rates of sequence evolution of Y-linked satellite DNA in Rumex (polygonaceae). J Mol Evol 60:391–399

    Article  PubMed  Google Scholar 

  • Navajas-Pérez R, Rubio-Escudero C, Aznarte JL, Ruiz-Rejón M, Garrido-Ramos MA (2007) SatDNA analyzer: a computing tool for satellite-DNA evolutionary analysis. Bioinformatics 23:767–768

    Article  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia Press, New York

    Google Scholar 

  • Nozawa M, Kumagai M, Aotsuka T, Tamura K (2006) Unusual evolution of interspersed repeat sequences in the Drosophila ananassae subgroup. Mol Biol Evol 23:981–987

    Article  CAS  PubMed  Google Scholar 

  • Ò Foighil D, Taylor DJ (2000) Evolution of parental care and ovulation behaviour in oysters. Mol Phyl Evol 15:301–313

    Article  Google Scholar 

  • Ò Foighil D, Gaffney PM, Wilbur AE, Hilbish TJ (1998) Mitochondrial cytochrome oxidase I gene sequences support an Asian origin for the Portuguese oyster Crassostrea angulata. Mar Biol 131:497–503

    Article  Google Scholar 

  • Palomeque T, Carrillo JA, Muñoz-López M, Lorite P (2006) Detection of a mariner-like element and miniature inverted-repeat transposable element (MITE) associated with the heterochromatin from ants of genus Messor and their possible involvement for satellite DNA evolution. Gene 371:194–205

    Article  CAS  PubMed  Google Scholar 

  • Plohl M, Petrović V, Luchetti A, Ricci A, Šatović E, Passamonti M, Mantovani B (2010) Long-term conservation vs high sequence divergente: the case of an extraordinarily old satellite DNA in bivalve mollusks. Heredity 104:543–551

    Article  CAS  PubMed  Google Scholar 

  • Robles F, de la Herrán R, Ludwig A, Ruiz Rejón C, Ruiz Rejón M, Garrido-Ramos MA (2004) Evolution of ancient satellite DNAs in sturgeon genomes. Gene 338:133–142

    Article  CAS  PubMed  Google Scholar 

  • Rozas J, Rozas R (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174–175

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning. A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sobolewska H, Beaumont AR, Hamilton A (2001) Dinucleotide microsatellites isolated from the European flat oyster, Ostrea edulis. Mol Ecol Notes 1:79–80

    Article  CAS  Google Scholar 

  • Stenzel HB (1971) Oysters. Part N. Bivalvia. Treatise on invertebrate paleontology, vol 3. University of Kansas and the Geological Society of America Inc., Boulder, CO, p 1224

    Google Scholar 

  • Winnepenninckx B, Backeljau T, de Wachter R (1993) Extraction of high molecular weigh DNA from molluscs. Trends Genet 9:407

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Li Q (2007) Genetic variation of wild and hatchery populations of the pacific oyster Crassostrea gigas assessed by microsatellite markers. J Genet Genom 34(12):1114–1122. PMID: 18155624

    Google Scholar 

  • Zhang Q, Allen SK, Reece KS (2005) Genetic variation in wild and hatchery stocks of Suminoe oyster (Crassostrea ariakensis) assessed by PCR-RFLP and microsatellite markers. Mar Biotechnol 7:588–599

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Plan Andaluz de Investigación (Group Nos. BIO200 and BIO219) and a grant from the Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía (Project No. C03-082). We are greatly indebted to Dr. José Ignacio Navas (CIFPA “Agua del Pino”, Huelva, Spain) for his help in sampling and technical assistance. We also thank our colleagues Pierre Boudry for providing us some oyster samples, and to our colleague David Nesbitt for revising our English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto de la Herrán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Flores, I., Ruiz-Rejón, C., Cross, I. et al. Molecular characterization and evolution of an interspersed repetitive DNA family of oysters. Genetica 138, 1211–1219 (2010). https://doi.org/10.1007/s10709-010-9517-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-010-9517-1

Keywords

Navigation