, Volume 138, Issue 8, pp 895–906 | Cite as

Genetic diversity and connectivity remain high in Holothuria polii (Delle Chiaje 1823) across a coastal lagoon-open sea environmental gradient

  • Carlos Vergara-ChenEmail author
  • Mercedes González-Wangüemert
  • Concepción Marcos
  • Ángel Pérez-Ruzafa
Original Research


Coastal lagoons represent habitats with widely heterogeneous environmental conditions, particularly as regards salinity and temperature, which fluctuate in both space and time. These characteristics suggest that physical and ecological factors could contribute to the genetic divergence among populations occurring in coastal lagoon and open-coast environments. This study investigates the genetic structure of Holothuria polii at a micro-geographic scale across the Mar Menor coastal lagoon and nearby marine areas, estimating the mitochondrial DNA variation in two gene fragments, cytochrome oxidase I (COI) and 16S rRNA (16S). Dataset of mitochondrial sequences was also used to test the influence of environmental differences between coastal lagoon and marine waters on population genetic structure. All sampled locations exhibited high levels of haplotype diversity and low values of nucleotide diversity. Both genes showed contrasting signals of genetic differentiation (non-significant differences using COI and slight differences using 16S, which could due to different mutation rates or to differential number of exclusive haplotypes. We detected an excess of recent mutations and exclusive haplotypes, which can be generated as a result of population growth. However, selective processes can be also acting on the gene markers used; highly significant generalized additive models have been obtained considering genetic data from 16S gene and independent variables such as temperature and salinity.


Coastal lagoon Gene flow Genetic diversity Holothuria polii Mitochondrial DNA Selection Generalized additive models (GAMs) 



We thank Giomar Borrero-Pérez and Mari Carmen Mompeán who assisted in the field and laboratory work. This study received partial financial support from the Fundación Séneca, Agencia Regional de Ciencia y Tecnología de la Región de Murcia, Spain (03000/PI/05), the PEPLAN project (Comunidad Autónoma de la Región de Murcia) and the AECI Programme, Agencia Española de Cooperación Internacional; Ministerio de Asuntos Exteriores, Spain (A/6704/06). The first author was supported by the Alßan Programme, the European Union Programme of High Level Scholarships for Latin America, scholarship No. E06D101939PA.


  1. Allegruci G, Fortunato C, Sbordon V (1997) Genetic structure and allozyme variation of sea bass (Dicentrarchus labrax and D. punctatus) in the Mediterranean Sea. Mar Biol 128:347–358CrossRefGoogle Scholar
  2. Andolfato P (2005) Adaptive evolution of non-coding DNA in Drosophila. Nature 437:1149–1152CrossRefGoogle Scholar
  3. Andrade SCS, Solferini VN (2007) Fine-scale genetic structure overrides macro-scale structure in a marine snail: nonrandom recruitment, demographic events or selection? Biol J Linn Soc 91:23–36CrossRefGoogle Scholar
  4. Arnaued-Harond S, Vonau V, ROuxel C, Bonhomme F, Prou J, Goyard E, Boudry P (2008) Genetic structure at different spatial scales in the pearl oyster (Pinctada margaritifera cumingii) in French Polynesian lagoons: beware of sampling strategy and genetic patchiness. Mar Biol 155:147–157CrossRefGoogle Scholar
  5. Arndt A, Marquez C, Lambert O, Smith MJ (1996) Molecular phylogeny of eastern Pacific sea cucumbers (Echinodermata: Holothuroidea) based on mitochondrial DNA sequence. Mol Phylogenet Evol 6:425–437CrossRefPubMedGoogle Scholar
  6. Asha PS, Muthiah P (2002) Spawning and larval rearing of sea cucumber Holothuria (Theelothuria) spinifera Theel. SPC Beche-de-mer Inf Bull 16:11–15Google Scholar
  7. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  8. Avise JC, Neigel JE, Arnold J (1984) Demographic influences on mitochondrial DNA lineage survivorship in animal populations. J Mol Evol 20:99–105CrossRefPubMedGoogle Scholar
  9. Ball AO, Chapman RW (2003) Population genetic analysis of white shrimp, Litopenaeus setiferus, using microsatellite genetic markers. Mol Ecol 12:2319–2330CrossRefPubMedGoogle Scholar
  10. Ballard JWO, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13:729–744CrossRefPubMedGoogle Scholar
  11. Beheregaray L, Sunnucks P (2001) Fine-scale genetic structure, estuarine colonization and incipient speciation in the marine silverside fish Odontesthes argentinensis. Mol Ecol 10:2849–2866CrossRefPubMedGoogle Scholar
  12. Bisol PM, Gallini A, Prevedllo S, Rianna E, Bernardinelli E, Franco A, Zane L (2007) Low variation at allozyme loci and differences between age classes at microsatellites in grass goby (Zosterisessor ophiocephalus) populations. Hydrobiol 577:151–159CrossRefGoogle Scholar
  13. Calderón I, Giribet G, Turon X (2008) Two markers and one history: phylogeography of the edible common sea urchin Paracentrotus lividus in the Lusitanian region. Mar Biol 154:137–151CrossRefGoogle Scholar
  14. Camilli L, Castelli A, Lardicci C, Maltagliati F (2001) Evidence for high levels of genetic divergence between populations of the bivalve Mytilaster minimus from a brackish environment and two adjacent marine sites. J Molluscan Stud 67:506–510Google Scholar
  15. Chenuil A, Féral JP (2003) Sequences of mitochondrial DNA suggest that Echinocardium cordatum is a complex of several sympatric or hybridizing species: a pilot study. In: Féral JP, David B (eds) Echinoderm Research 2001. Proceedings of the Sixth European Conference on Echinoderm, Banyuls-sur-Mer, France, Swets & Zeitlinger, Lisse, pp 15–32Google Scholar
  16. Chessel D (1992) The ade4 package-I: one-table methods. R News 4:5–10Google Scholar
  17. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659CrossRefPubMedGoogle Scholar
  18. Cognetti G, Maltagliati F (2000) Biodiversity and adaptive mechanisms in brackish water fauna. Mar Pollut Bull 40:7–14CrossRefGoogle Scholar
  19. Crandall KA, Templeton AR (1993) Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction. Genetics 134:959–969PubMedGoogle Scholar
  20. Durán S, Palacin C, Becerro MA, Turon X, Giribet G (2004) Genetic diversity and population structure of the commercially harvested sea urchin Paracentrotus lividus (Echinodermata, Echinoidea). Mol Ecol 13:3317–3328CrossRefPubMedGoogle Scholar
  21. Ewens W (1972) The sampling theory of selectively neutral alleles. Theor Popul Biol 3:87–112CrossRefPubMedGoogle Scholar
  22. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  23. Fitzpatrick BM (2009) Power and sample size for nested analysis of molecular variance. Mol Ecol 18:3961–3966CrossRefPubMedGoogle Scholar
  24. Fu YX (1997) Statistical test of neutrality of mutation against population growth, hitchhiking and background selection. Genetics 147:915–925PubMedGoogle Scholar
  25. Fu YX, Li WH (1993) Statistical test of neutrality of mutations. Genetics 133:693–709PubMedGoogle Scholar
  26. Gamito S, Gilabert J, Marcos C, Pérez-Ruzafa A (2005) Effects of changing environmental conditions on lagoon ecology. In: Gonenc IE, Wolflin J (eds) Coastal lagoons: ecosystem processes and modelling for sustainable use and development. CRC Press, Boca Raton, pp 193–229Google Scholar
  27. Garant D, Forde SE, Hendry AP (2007) The multifarious effects of dispersal and gene flow on contemporary adaptation. Funct Ecol 21:434–443CrossRefGoogle Scholar
  28. Garoia F, Guarniero I, Ramsak A, Ungaro N, Landi M, Piccinetti C, Mannini P, Tinti F (2004) Microsatellite DNA variation reveals high gene flow and panmictic populations in the Adriatic shared stocks of the European squid and cuttlefish (Cephalopoda). Heredity 93:166–174CrossRefPubMedGoogle Scholar
  29. Glinka S, Ometto L, Mousset S, Stephan W, De Lorenzo D (2003) Demography and natural selection have shaped genetic variation in Drosophila melanogaster: A multi-locus approach. Genetics 165:1269–1278PubMedGoogle Scholar
  30. González-Wangüemert M, Giménez-Casalduero F, Pérez-Ruzafa Á (2006) Genetic differentiation of Elysia timida (Risso, 1818) populations in Southwest Mediterranean and Mar Menor coastal lagoon. Biochem Syst Ecol 34:514–527CrossRefGoogle Scholar
  31. González-Wangüemert M, Pérez-Ruzafa Á, Cánovas F, García-Charton JA, Marcos C (2007) Temporal genetic variation in populations of Diplodus sargus from the SW Mediterranean. Mar Ecol Prog Ser 334:237–244CrossRefGoogle Scholar
  32. González-Wangüemert M, Cánovas F, Marcos C, Pérez-Ruzafa Á (2009) Phosphoglucose isomerase variability of Cerastoderma glaucum as a model for testing the influence of environmental conditions and dispersal patterns through quantitative ecology approaches. Biochem Syst Ecol 37:325–333CrossRefGoogle Scholar
  33. González-Wangüemert M, Cánovas F, Pérez-Ruzafa A, Marcos C, Alexandrino P (2010) Connectivity patterns inferred from the genetic structure of white seabream (Diplodus sargus L.). J Exp Mar Biol Ecol 383:23–31CrossRefGoogle Scholar
  34. Grant WS, Bowen BW (1998) Shallow population histories in deep evolutionary lineages of marine fishes: insights from the sardines and anchovies and lessons for conservation. J Heredity 89:415–426CrossRefGoogle Scholar
  35. Haerty W, Jagadeeshan S, Kulathinal RJ, Wong A, Ram KR, Sirot LK, Levesque L, Artieri CG, Wolfner MF, Civetta A, Singh RS (2007) Evolution in the fast lane: rapidly evolving sex-related genes in Drosophila. Genetics 177:1321–1335CrossRefPubMedGoogle Scholar
  36. Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symp Ser 41:95–98Google Scholar
  37. Hamel JF, Hidalgo RY, Mercier A (2003) Larval development and juvenile growth of the Galapagos sea cucumber Isostichopus fuscus. SPC Beche-de-mer Inf Bull 18:3–8Google Scholar
  38. Hastie T, Tibshirani R (1990) Generalized additive models. Chapman & Hall, LondonGoogle Scholar
  39. Iannotta MA, Toscano F, Patti FP (2009) Nassarius corniculus (Olivi, 1792) (Caenogastropoda: Nassariidae): a model of environmental complexity of Italian brackish and marine habitats. Mar Ecol 30:106–115CrossRefGoogle Scholar
  40. Iuri V, Patti FP, Procaccini G (2007) Phylogeography of the sea urchin Paracentrotus lividus (Lamarck) (Echinodermata:Echinoidea): first insights from the South Tyrrhenian Sea. Hydrobiol 580:77–84CrossRefGoogle Scholar
  41. Ivy G, Giraspy DAB (2006) Development of large-scale hatchery production techniques for the commercially important sea cucumber Holothuria scabra var. versicolor (Conand, 1986) in Queensland, Australia. SPC Beche-de-mer Inf Bull 24:28–38Google Scholar
  42. Koehler R (1921) Faune de France I. Échinodermes, ParisGoogle Scholar
  43. Kohn MH, Fang S, Wu C-I (2004) Inference of positive and negative selection on the 5′ regulatory regions of Drosophila genes. Mol Biol Evol 21:374–383CrossRefPubMedGoogle Scholar
  44. Larracuente AM, Sackton TB, Greenberg AJ, Wong A, Singh ND, Sturgill D, Zhang Y, Oliver B, Clark AG (2008) Evolution of protein-coding genes in Drosophila. Trends Genet 24:114–123CrossRefPubMedGoogle Scholar
  45. Lawrence JM (1987) A functional biology of echinoderms. Croom Helm, New South WalesGoogle Scholar
  46. Lawrence JM (1990) The effect of stress and disturbance on echinoderms. Zool Sci 71:559–565Google Scholar
  47. Lejeusne C, Chevaldonné P (2006) Brooding crustaceans in highly fragmented habitat: the genetic structure of Mediterranean marine cave-dwelling mysid populations. Mol Ecol 15:4123–4140CrossRefPubMedGoogle Scholar
  48. Lessios HA, Kessing BD, Robertson DR, Paulay G (1999) Phylogeography of pantropical sea urchin Eucidaris in relation to land barriers and ocean currents. Evolution 53:806–817CrossRefGoogle Scholar
  49. Lessios HA, Kessing BD, Pearse JS (2001) Population structure and speciation in tropical seas: global phylogeography of the sea urchin Diadema. Evolution 55:955–975CrossRefPubMedGoogle Scholar
  50. Li WH (1997) Molecular evolution. Sinauer Press, Sunderland, MAGoogle Scholar
  51. Macpherson JM, Sella G, Davis J, Petrov D (2007) Genomewide spatial correspondence between nonsynonymus divergence and neutral polymorphism reveals extensive adaptation in Drosophila. Genetics 177:2083–2099CrossRefPubMedGoogle Scholar
  52. Manel S, Schwartz MK, Luikart G, Tarberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197CrossRefGoogle Scholar
  53. Marino IAM, Barbisan F, Gennari M, Giomi F, Beltramini M, Bisol PM, Zane L (2010) Genetic heterogeneity in populations of the Mediterranean shore crab, Carcinus aestuarii (Decapoda, Portunidae), from the Venice Lagoon. Estuar Coast Shelf Sci 87:135–144CrossRefGoogle Scholar
  54. Marko PB, Barr KR (2007) Basin-scale patterns of mtDNA differentiation and gene flow in the bay scallop Argopecten irradians concentricus. Mar Ecol Prog Ser 349:139–150CrossRefGoogle Scholar
  55. McCartney MA, Keller G, Lessios HA (2000) Dispersal barriers in tropical oceans and speciation in Atlantic and eastern Pacific sea urchins of the genus Echinometra. Mol Ecol 9:1391–1400CrossRefPubMedGoogle Scholar
  56. McDonald JH, Kreitman M (1991) Adaptative protein evolution at the Adh locus in Drosophila. Nature 351:652–654CrossRefPubMedGoogle Scholar
  57. Michinina SR, Rebordinos L (1997) Genetic differentiation in marine and estuarine natural populations of Crassostrea angulata. Mar Ecol Prog Ser 154:167–174CrossRefGoogle Scholar
  58. Mustonen V, Lässig M (2005) Evolutionary population genetics of promoters: predicting binding sites and functional phylogenies. Proc Natl Acad Sci USA 102:15936–15941CrossRefPubMedGoogle Scholar
  59. Nachman MW (1998) Deleterious mutations in animal mitochondrial DNA. Genetica 103:61–69CrossRefGoogle Scholar
  60. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  61. Palumbi SR, Martin A, Romano S, McMillan WO, Stice L, Grabowski G (1991) The simple fool’s guide to PCR, Version 2.0. Privately published document compiled by Palumbi S. Special Publication of Department of Zoology, University of Hawaii, HonoluluGoogle Scholar
  62. Parisod C, Bonvin G (2008) Fine-scale genetic structure and marginal processes in an expanding population of Biscutella laevigata L. (Brassicaceae). Heredity 101:536–542CrossRefPubMedGoogle Scholar
  63. Patarnello T, Filip A, Volckaert MJ, Castilho R (2007) Pillars of Hercules: is the Atlantic-Mediterranean transition a phylogeographical break? Mol Ecol 16:4426–4444CrossRefPubMedGoogle Scholar
  64. Pérez-Ruzafa A, Fernández AI, Marcos C, Gilabert J, Quispe JI, García-Charton JA (2005) Spatial and temporal variations of hydrological conditions, nutrients and chlorophylla in a Mediterranean coastal lagoon (Mar Menor, Spain). Hydrobiol 550:11–27CrossRefGoogle Scholar
  65. Pérez-Ruzafa A, Marcos C, Pérez-Ruzafa IM, Barcala E, Hegazi MI, Quispe J (2007) Detecting changes resulting from human pressure in a naturally quick-changing and heterogeneous environment: Spatial and temporal scales of variability in coastal lagoons. Estuar Coast Shelf Sci 75(1–2):175–188CrossRefGoogle Scholar
  66. Planes S, Lenfant P (2002) Temporal change in the genetic structure between and withincohorts of a marine fish, Diplodus sargus, induced by a large variance in individual reproductive success. Mol Ecol 11:1515–1524CrossRefPubMedGoogle Scholar
  67. Posada D, Crandall KA (2001) Intraspecific phylogenetics: Trees grafting into networks. Trends Ecol Evol 16:37–45CrossRefPubMedGoogle Scholar
  68. R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
  69. Ragioneri L, Cannicci S, Schubart CD, Fratini S (2010) Gene flow and demographic history of the mangrove crab Neosarmatium meinerti: a case study from the western Indian Ocean. Estuar Coast Shelf Sci 86:179–188CrossRefGoogle Scholar
  70. Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100PubMedGoogle Scholar
  71. Rand DM (2001) The units of selection on mitochondrial DNA. Ann Rev Ecol Syst 32:415–448CrossRefGoogle Scholar
  72. Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise differences. Mol Biol Evol 9:552–559PubMedGoogle Scholar
  73. Rokas A, Ladoukakis E, Zouros E (2003) Animal mitochondrial DNA recombination revisted. Trends Ecol Evol 18:411–417CrossRefGoogle Scholar
  74. Rozas J, Sánchez-Del Barrio JC, Meseguer X, Rozas R (2003) DNASP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497CrossRefPubMedGoogle Scholar
  75. Sambrook E, Fritsch F, Maniatis T (1989) Molecular cloning. Cold Spring Harbour press, New YorkGoogle Scholar
  76. Sanders HL (1968) Marine benthic diversity: a comparative study. Amer Nat 102:243–282CrossRefGoogle Scholar
  77. Schlötterer C (2003) Hitch hiking mapping functional genomics from the population genetics perspective. Trends Genet 19:32–38CrossRefPubMedGoogle Scholar
  78. Schneider S, Roessli D, Excoffier L (2000) ARLEQUIN version 2.000: a software for population genetic data analysis. Genetics and Biometry Laboratory, University of Geneva, GenevaGoogle Scholar
  79. Snäll T, Fogelqvist J, Ribeiro PJ, Lascoux M (2004) Spatial genetic structure in two congeneric epiphytes with different dispersal strategies analyzed by three different methods. Mol Ecol 13:2109–2119CrossRefPubMedGoogle Scholar
  80. Stamatis C, Triantafyllidis A, Moutou KA, Mamuris Z (2004) Mitochondrial DNA variation in northeast Atlantic and Mediterranean populations of Norway lobster, Nephrops norvergicus. Mol Ecol 13:1377–1390CrossRefPubMedGoogle Scholar
  81. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedGoogle Scholar
  82. Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonucleases mapping and DNA sequence data. III. Cladrogram estimation. Genetics 132:619–633PubMedGoogle Scholar
  83. Teschke M, Mukabayire O, Wiehe T, Tautz D (2008) Identification of selective sweeps in closely related populations of the house mouse based on microsatellite scans. Genetics 180:1537–1545CrossRefPubMedGoogle Scholar
  84. Thandar AS (1988) A new subgenus of Holothuria with a description of a new species from the South-East Atlantic Ocean. J Zool 215:47–54CrossRefGoogle Scholar
  85. Tsaousis AD, Martin DP, Ladoukakis ED, Posada D, Zouros E (2005) Widespread recombination in published animal mtDNA sequences. Mol Biol Evol 22:925–933CrossRefPubMedGoogle Scholar
  86. Untersee S, Pechenik JA (2007) Local adaptation and maternal effects in two species of marine gastropod (genus Crepidula) that differ in dispersal potential. Mar Ecol Prog Ser 347:79–85CrossRefGoogle Scholar
  87. Uthicke S, Benzie JAH (2001) Restricted gene flow between Holothuria scabra (Echinodermata: Holothuroidea) populations along the North-East Coast of Australia and the Solomon Islands. Mar Ecol Prog Ser 216:109–117CrossRefGoogle Scholar
  88. Uthicke S, Benzie JAH (2003) Gene flow and population history in high dispersal marine invertebrates: mitochondrial DNA analysis of Holothuria nobilis (Echinodermara: Holothuroidea) populations from the Indo-Pacific. Mol Ecol 12:2635–2648CrossRefPubMedGoogle Scholar
  89. Uthicke S, Purcell S (2004) Preservation of genetic diversity in restocking of the sea cucumber Holothuria scabra investigated by allozyme analysis. Can J Fish Aqu Sci 61:519–528CrossRefGoogle Scholar
  90. Véliz D, Duchesne P, Bourget E, Bernatchez L (2006) Stable genetic polymorphism in heterogeneous environments: balance asymmetrical dispersal and selection in the acorn barnacle. J Evol Biol 19:589–599CrossRefPubMedGoogle Scholar
  91. Venables WN, Ripley BD (2004) Modern applied statistics with S-plus. Springer, New YorkGoogle Scholar
  92. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  93. Wood S (2000) Modelling and smooting parameter estimation with multiple quadratic penalties. J Roy Stat Soc Ser B 62:413–428CrossRefGoogle Scholar
  94. Wood S (2006) Generalized additive models: an introduction with R. Chapman & Hall, UKGoogle Scholar
  95. Wood SN, Augustin NH (2002) GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecol Mod 157:157–177CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Carlos Vergara-Chen
    • 1
    Email author
  • Mercedes González-Wangüemert
    • 1
    • 2
  • Concepción Marcos
    • 1
  • Ángel Pérez-Ruzafa
    • 1
  1. 1.Departamento de Ecología e Hidrología, Facultad de BiologíaUniversidad de MurciaMurciaSpain
  2. 2.Centro de Ciências do Mar (CCMAR)Universidade do AlgarveFaroPortugal

Personalised recommendations