Skip to main content
Log in

The complete mitochondrial DNA sequence of the guanaco (Lama guanicoe): comparative analysis with the vicuña (Vicugna vicugna) genome

  • Brief Report
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

South American camelids comprise the guanaco (Lama guanicoe) and the vicuña (Vicugna vicugna), which are wild species, and the domestic llama (Lama glama) and alpaca (Lama pacos). This paper presents the first complete mitochondrial (mt) genome of the guanaco and the mt coding sequence of the vicuña. The guanaco mtDNA is 16,649 nt long and its composition and organization are similar to the mitochondrial genome of other mammals. Excluding the control region, comparison of the complete guanaco and vicuña mtDNA showed 4.4% sequence divergence. Nucleotide differences in peptide coding genes varied from 1.9% in ATP6 to 6.4% in Cyt b. These values are compatible with the close relatedness of both species identified by other authors. Based on the differences between the control region sequence here reported and that previously described, we also discuss the occurrence of NUMTs in the genome of South American camelids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:427–465

    Google Scholar 

  • Anderson S, de Bruijn MH, Coulson AR, Eperon IC, Sanger F, Young IG (1982) Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J Mol Biol 156:683–717

    Article  CAS  PubMed  Google Scholar 

  • Arnason U, Gullberg A, Johnsson E, Ledje C (1993) The nucleotide sequence of the mitochondrial DNA molecule of the grey seal, Halichoerus grypus, and a comparison with mitochondrial sequences of other true seals. J Mol Evol 37(4):323–330

    CAS  PubMed  Google Scholar 

  • Arnason U, Gulberg A, Janke A (2004) Mitogenomic analyses provide new insights into cetacean origin and evolution. Gene 333:27–34

    Article  CAS  PubMed  Google Scholar 

  • Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580

    Article  CAS  PubMed  Google Scholar 

  • Bustamante A, Zambelli A, De Lamo D, von Thungen J, Vidal-Rioja L (2002) Genetic variability of guanaco and llama populations in Argentina. Small Rumin Res 44:97–101

    Article  Google Scholar 

  • Feinstein J, Cracraft J (2004) Solving a sequencing problem in the vertebrate mitochondrial control region using phylogenetic comparisons. DNA Seq 15(56):374–377

    CAS  PubMed  Google Scholar 

  • Franklin WL (1982) Biology, ecology, and relationships to man of the South American camelids. In: Mares MA, Genoways HH (eds) Mammalian biology of South America. The pymatuning symposium in ecology, special publication, vol 6. Pittsburgh, Pennsylvania, pp 57–489

  • Kadwell M, Stanley H, Fernandez M, Wheeler J, Rosadío R, Brudford M (2001) Genetics analysis reveals the wild ancestors of the llama and the alpaca. Proc R Soc Lond B 268:2575–2584

    Article  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3.1: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  CAS  PubMed  Google Scholar 

  • Lopez JV, Yuhki N, Masuda R, Modi W, O’Brien SJ (1994) Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat. J Mol Evol 39(2):174–190

    CAS  PubMed  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  CAS  PubMed  Google Scholar 

  • Madsen CS, Ghivizzani SC, Hauswirth WW (1993) Protein binding to a single termination-associated sequence in the mitochondrial DNA D-loop region. Mol Cell Biol 13(4):2162–2171

    CAS  PubMed  Google Scholar 

  • Marín JC, Zapata B, González BA, Bonacic C, Wheeler JC, Casey C, Bruford MW, Palma ER, Poulin NE, Alliende MA, Spotorno AE (2007) Systematics, taxonomy and domestication of alpaca and llama: new chromosomal and molecular evidence. Rev Chil Hist Nat 80:121–140

    Article  Google Scholar 

  • Marín JC, Spotorno AE, González BA, Bonacic C, Wheeler J, Casey C, Brudford M, Palma RE, Poulin E (2008) Mitochondrial DNA variation and Systematics of the Guanaco (Lama guanicoe, Artiodactyla:Camelidae). J Mammal 89(2):269–281

    Article  Google Scholar 

  • Martens PA, Clayton DA (1979) Mechanism of mitochondrial DNA replication in mouse L-cells: localization and sequence of the light-strand origin of replication. J Mol Biol 135(2):327–351

    Article  CAS  PubMed  Google Scholar 

  • Maté ML, Di Rocco F, Zambelli A, Vidal Rioja L (2004) Mitochondrial DNA structure and organization of the control region of South American camelids. Mol Ecol Notes 4:765–767

    Article  Google Scholar 

  • Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290:470–474

    Article  CAS  PubMed  Google Scholar 

  • SantaLucia J Jr (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci USA 95:1460–1465

    Article  CAS  PubMed  Google Scholar 

  • Sarno R, Villalba L, Bonacic C, González B, Zapata B, Mac Donald DW, O’Brien SJ, Johnson WE (2004) Phylogeography and subspecies assessment of vicuña in Chile and Bolivia utilizing mtDNA and microsatellite markers: implications for vicuña conservation and management. Conserv Genet 5:89–102

    Article  CAS  Google Scholar 

  • Sbisà E, Tanzariello F, Reyes A, Pesole G, Saccone C (1997) Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications. Gene 205(1–2):125–140

    Article  PubMed  Google Scholar 

  • Semorile LC, Crisci J, Vidal Rioja L (1994) Restriction site patterns in the ribosomal DNA of Camelidae. Genetica 92:115–122

    Article  CAS  PubMed  Google Scholar 

  • Stanley H, Kadwell M, Wheeler JC (1994) Molecular evolution of the family Camelidae: a mitochondrial DNA study. Proc R Soc Lond 256:1–6

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  Google Scholar 

  • Ursing BM, Arnason U (1998) The complete mitochondrial DNA sequence of pig (Sus scrofa). Mol Biol Evol 47:302–306

    CAS  Google Scholar 

  • Vidal Rioja L, Zambelli AD, Semorile LC (1994) An assessment of the relationships among Camelidae species by satellite DNA comparisons. Hereditas 121:283–290

    Article  CAS  PubMed  Google Scholar 

  • Wheeler JC (1995) Evolution and present situation of the South American Camelidae. Biol J Linn Soc 54:271–295

    Article  Google Scholar 

  • Xu X, Arnason U (1994) The complete mitochondrial DNA sequence of the horse, Equus caballus: extensive heteroplasmy of the control region. Gene 148:357–362

    Article  CAS  PubMed  Google Scholar 

  • Zhang DX, Hewitt GM (1996) Nuclear integrations: challenges for mitochondrial DNA markers. Trends Ecol Evol 11:247–251

    Article  Google Scholar 

  • Zischler H, Geisert H, von Haeseler A, Paabo S (1995) A nuclear fossil of the mitochondrial D-loop and the origin of modern humans. Nature 378:489–492

    Article  CAS  PubMed  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Daniel Delamo and Prof. Bibiana Vila for the provision of guanaco and vicuña blood samples, and B. Tosti for the English revision of the manuscript. This work has been supported by grants from: Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florencia Di Rocco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Rocco, F., Zambelli, A., Maté, L. et al. The complete mitochondrial DNA sequence of the guanaco (Lama guanicoe): comparative analysis with the vicuña (Vicugna vicugna) genome. Genetica 138, 813–818 (2010). https://doi.org/10.1007/s10709-010-9465-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-010-9465-9

Keywords

Navigation