Skip to main content
Log in

The impact of genome defense on mobile elements in Microbotryum

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Repeat induced point mutation (RIP), a mechanism causing hypermutation of repetitive DNA sequences in fungi, has been described as a ‘genome defense’ which functions to inactivate mobile elements and inhibit their deleterious effects on genome stability. Here we address the interactions between RIP and transposable elements in the Microbotryum violaceum species complex. Ten strains of M. violaceum, most of which belong to different species of the fungus, were all found to contain intragenomic populations of copia-like retrotransposons. Intragenomic DNA sequence variation among the copia-like elements was analyzed for evidence of RIP. Among species with RIP, there was no significant correlation between the frequency of RIP-induced mutations and inferred transposition rate based on diversity. Two strains of M. violaceum, from two different plant species but belonging to the same fungal lineage, contained copia-like elements with very low diversity, as would result from a high transposition rate, and these were also unique in showing no evidence of the hypermutation patterns indicative of the RIP genome defense. In this species, evidence of RIP was also absent from a Class II helitron-like transposable element. However, unexpectedly the absolute repetitive element load was lower than in other strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agrawal N, Dasaradhi PVN, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK (2003) RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 67(4):657–688

    Article  CAS  PubMed  Google Scholar 

  • Almaraz T, Roux C, Maumont S, Durrieu G (2002) Phylogenetic relationships among smut fungi parasitizing dicotyledons based on ITS sequence analysis. Mycol Res 106:541–548

    Article  CAS  Google Scholar 

  • Bestor TH (1999) Sex brings transposons and genomes into conflict. Genetica 107(1–3):289–295

    Article  CAS  PubMed  Google Scholar 

  • Clutterbuck A (2004) MATE transposable elements in Aspergillus nidulans: evidence of repeat-induced point mutation. Fungal Genet Biol 41:308–316

    Article  CAS  PubMed  Google Scholar 

  • Crouch JA, Glasheen BM, Giunta MA, Clarke BB, Hillman BI (2008) The evolution of transposon repeat-induced point mutation in the genome of Colletotrichum cereale: reconciling sex, recombination and homoplasy in an “asexual” pathogen. Fungal Genet Biol 45:190–206

    Article  CAS  PubMed  Google Scholar 

  • Daboussi M-J, Capy P (2003) Transposable elements in filamentous fungi. Annu Rev Microbiol 57:275–299

    Article  CAS  PubMed  Google Scholar 

  • Daboussi M-J, Daviere J-M, Graziani G, Langin T (2002) Evolution of the Fot1 transposons in the genus Fusarium: discontinuous distribution and epigenetic inactivation. Mol Biol Evol 19:510–520

    CAS  PubMed  Google Scholar 

  • Deceliere G, Charles S, Biémont C (2005) The dynamics of transposable elements in structured populations. Genetics 169:467–474

    Article  CAS  PubMed  Google Scholar 

  • Flavell AJ (1999) Long terminal repeat retrotransposons jump between species. Proc Natl Acad Sci USA 96(22):12211–12212

    Article  CAS  PubMed  Google Scholar 

  • Flavell AJ, Pearce SR, Heslop-Harrison P, Kumar A (1997) The evolution of Ty1-copia retrotransposons in eukaryote genomes. Genetica 100:185–195

    Article  CAS  PubMed  Google Scholar 

  • Galagan JA, Selker EU (2004) RIP: the evolutionary cost of genome defense. Trends Genet 20(9):417–423

    Article  CAS  PubMed  Google Scholar 

  • Garber ED, Ruddat M (1994) Genetics of Ustilago violacea. XXXII. Genetic evidence for transposable elements. Theor Appl Genet 89:838–846

    Article  CAS  Google Scholar 

  • Garber ED, Ruddat M (1998) Genetics of Ustilago violacea. XXXIV. Genetic evidence for a transposable element functioning during mitosis and two transposable elements functioning during meiosis. Int J Plant Sci 159:1018–1022

    Google Scholar 

  • Garber ED, Ruddat M (2000) Genetics of Ustilago violacea. XXXV. Transposition in haploid and diploid sporidia and germinating teliospores. Int J Plant Sci 161:227–231

    Article  PubMed  Google Scholar 

  • Garber ED, Ruddat M (2002) Transmission genetics of Microbotryum violaceum (Ustilago violacea): a case history. Adv Appl Microbiol 51:107–127

    Article  CAS  PubMed  Google Scholar 

  • Giraud T, Jonot O, Shykoff JA (2005) Selfing propensity under choice conditions in a parasitic fungus, Microbotryum violaceum, and parameters influencing infection success in artificial inoculations. Int J Plant Sci 166:649–657

    Article  Google Scholar 

  • Giraud T, Yockteng R, López-Villavicencio M, Refrégier G, Hood ME (2008) The mating system of the anther smut fungus, Microbotryum violaceum: selfing under heterothallism. Eukaryot Cell 7:765–775

    Article  CAS  PubMed  Google Scholar 

  • Goddard MR, Burt A (1999) Recurrent invasion and extinction of a selfish gene. PNAS USA 96(24):13880–13885

    Article  CAS  PubMed  Google Scholar 

  • Hamann A, Feller F, Osiewacz HD (2000) The degenerate DNA transposon Pat and repeat-induced point mutation (RIP) in Podospora anserina. Mol Gen Genet 263:1061–1069

    Article  CAS  PubMed  Google Scholar 

  • Hood ME (2005) Repetitive DNA in the automictic fungus Microbotryum violaceum. Genetica 124(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Hood ME, Katawczik M, Giraud T (2005) Repeat-induced point mutation and the population structure of transposable elements in Microbotryum violaceum. Genetics 170(3):1081–1089

    Article  CAS  PubMed  Google Scholar 

  • Hurst LD (1992) Intragenomic conflict as an evolutionary force. Proc R Soc 248(1322):135–140

    Article  Google Scholar 

  • Ikeda K, Nakayashiki H, Kataoka T, Tamba H, Hashimoto Y, Tosa Y, Mayama S (2002) Repeat-induced point mutation (RIP) in Magnaporthe grisea: implications for its sexual cycle in the natural field environment. Mol Microbiol 45(5):1355–1364

    Article  CAS  PubMed  Google Scholar 

  • Johnson LJ (2007) The genome strikes back: the evolutionary importance of defence against mobile elements. Evol Biol 34:121–129

    Article  Google Scholar 

  • Josse T, Teysset L, Todeschini A-L, Sidor C, Anxolabéhère D, Ronsseray S (2007) Telomeric trans-silencing: an epigenetic repression combining RNA silencing and heterochromatin formation. PLOS Genet 3(9):e158

    Google Scholar 

  • Kidwell MG, Lisch DR (2001) Transposable elements, parasitic DNA and genome evolution. Evolution 55(1):1–24

    CAS  PubMed  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  CAS  PubMed  Google Scholar 

  • Le Gac M, Hood ME, Fournier E, Giraud T (2007) Phylogenetic evidence of host-specific cryptic species in the anther smut fungus. Evolution 61:15–26

    Article  CAS  PubMed  Google Scholar 

  • Lutz M, Piatek M, Kemler M, Chlebicki A, Oberwinkler F (2008) Anther smuts of Caryophyllaceae: molecular analyses reveal further new species. Mycol Res 112:1280–1296

    Article  PubMed  Google Scholar 

  • Nee S, Maynard Smith J (1990) The evolutionary biology of molecular parasites. Parasitology 100:S5–S18

    Article  PubMed  Google Scholar 

  • Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  CAS  PubMed  Google Scholar 

  • Selker EU (2002) Repeat-induced gene silencing in fungi. Adv Genet 46:439–450

    Article  CAS  PubMed  Google Scholar 

  • Yockteng R, Marthey S, Chiapello H, Gendrault A, Hood ME, Rodolphe F, Wincker P, Dossat C, Giraud T (2007) Expressed sequences tags of the anther smut fungus, Microbotryum violaceum, identify mating and pathogenicity gene. BMC Genomics 8:272

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NSF award DEB-0446671 to M. E. Hood. We thank Misty Hurt for technical advice, Janis Antonovics for comments on an earlier version of this manuscript, and anonymous reviews for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise J. Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, L.J., Giraud, T., Anderson, R. et al. The impact of genome defense on mobile elements in Microbotryum . Genetica 138, 313–319 (2010). https://doi.org/10.1007/s10709-009-9419-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-009-9419-2

Keywords

Navigation