Skip to main content

Advertisement

Log in

Gene expression of halophyte Kosteletzkya virginica seedlings under salt stress at early stage

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Gene differential expression of Kosteletzkya virginica seedlings under salt stress at two time points (2, 24 h) in roots and leaves was analyzed using the cDNA-amplified fragment length polymorphism (cDNA-AFLP) technique. Polymorphic transcript-derived fragments (TDFs) among control plants and salt-treated plants were grouped into four main differential expression patterns: repression (A), de novo induction (B), up-regulation (C) and down-regulation (D). Among them, 34 differentially expressed gene fragments were homologous to known genes from other species and 4 were sequences with unknown functions. These differentially expressed genes can be classified into four groups according to their putative functions: (1) genes for re-establishing ion homeostasis and protecting the plant from stress damage; (2) genes involved in metabolism or energy and resuming plant growth and development under salt stress; (3) genes involved in regulation of gene expression; (4) genes for signal transduction. Changes of eight differentially expressed genes were confirmed by quantitative real time RT-PCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

cDNA-AFLP:

cDNA amplified fragment length polymorphism

TDFs:

Transcript-derived fragments

qRT-PCR:

Quantitative real time RT-PCR

References

  • Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Aono M, Saji H, Sakamoto A et al (1995) Paraquat tolerance of transgenic Nicotiana tabacum with enhanced activities of glutathione reductase and superoxide dismutase. Plant Cell Physiol 36:687–1691

    Google Scholar 

  • Bachem CWB, vander Hoeven RS, deBrujin SM et al (1996) Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J 9:745–753

    Article  PubMed  CAS  Google Scholar 

  • Bao F, Li JY (2002) Evidence that the auxin signaling pathway interacts with plant stress response. Acta Bot Sin 44:532–536

    CAS  Google Scholar 

  • Bolle C (2004) The role of GRAS proteins in plant signal transduction and development. Planta 218:683–692

    Article  PubMed  CAS  Google Scholar 

  • Breyne P, Dreesen R, Cannoot B et al (2003) Quantitative cDNA-AFLP analysis for genome-wide expression studies. Mol Gen Genomics 269:173–179

    CAS  Google Scholar 

  • Bülow L, Steffens NO, Galuschka C et al (2006) AthaMap: from in silico data to real transcription factor binding sites. In Silico Biol 6:243–252

    Article  PubMed  Google Scholar 

  • Cellier F, Conejero G, Ricaud L et al (2004) Characterization of AtCHX17, a member of the cation/H+ exchangers, CHX family, from Arabidopsis thaliana suggests a role in K+ homeostasis. Plant J 39:834–846

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Chen Z (2000) Isolation and characterization of two pathogen- and salicylic acid-induced genes encoding WRKY DNA-binding proteins from tobacco. Plant Mol Biol 42:387–396

    Article  PubMed  CAS  Google Scholar 

  • Dellagi A, Heilbronn J, Avrova AO et al (2000) A potato gene encoding a WRKY-like transcription factor is induced in interactions with Erwinia carotovora subsp. atroseptica and Phytophthora infestans and is coregulated with class I endochitinase expression. Mol Plant Microbe Interact 13:1092–1101

    Article  PubMed  CAS  Google Scholar 

  • Dragon F, Gallagher JE, Compagnone-Post PA et al (2002) A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature 417:967–970

    Article  PubMed  CAS  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S et al (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  PubMed  CAS  Google Scholar 

  • Germain V, Rylott EL, Larson TR et al (2001) Requirement for 3-ketoacyl-CoA thiolase-2 in peroxisome development, fatty acid beta-oxidation and breakdown of triacylglycerol in lipid bodies of Arabidopsis seedlings. Plant J 28:1–12

    Article  PubMed  CAS  Google Scholar 

  • Hall D, Evans AR, Newbury HJ et al (2006) Functional analysis of CHX21: a putative sodium transporter in Arabidopsis. J Exp Bot 57:1201–1210

    Article  PubMed  CAS  Google Scholar 

  • Hamel R, Appanna VD, Viswanatha T et al (2004) Overexpression of isocitrate lyase is an important strategy in the survival of Pseudomonas fluorescens exposed to aluminum. Biochem Biophys Res Commun 317:1189–1194

    Article  PubMed  CAS  Google Scholar 

  • Hamilton CA, Good AG, Taylor GJ (2001) Induction of vacuolar ATPase and mitochondrial ATP synthase by aluminum in an aluminum-resistant cultivar of wheat. Plant Physiol 125:2068–2077

    Article  PubMed  CAS  Google Scholar 

  • Hayashi M, Toriyama K, Kondo M et al (1998) 2,4-Dichlorophenoxybutyric acid-resistant mutants of Arabidopsis have defects in glyoxysomal fatty acid beta-oxidation. Plant Cell 10:183–195

    Article  PubMed  CAS  Google Scholar 

  • Holmgren A (1989) Thioredoxin and glutaredoxin systems. J Biol Chem 264:13963–13966

    PubMed  CAS  Google Scholar 

  • Holmstrom K, Mantyla E, Welin B et al (1996) Drought tolerance in tobacco. Nature 379:683–684

    Article  Google Scholar 

  • Kasuga M, Liu Q, Miura S et al (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  PubMed  CAS  Google Scholar 

  • Kishor PBK, Hong Z, Miao GH et al (1995) Overexpression of Δ1-pyrrolin-5- carboxylate synthase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    PubMed  CAS  Google Scholar 

  • Koh EJ, Song WY, Lee Y et al (2006) Expression of yeast cadmium factor 1 (YCF1) confers salt tolerance to Arabidopsis thaliana. Plant Sci 170:534–541

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−△△CT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Madan S, Nainawatee HS, Jain RK et al (1995) Proline and proline metabolising enzymes in in vitro selected NaCl-tolerant Brassica juncea L. under Salt Stress. Ann Bot 76:51–57

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gallery M et al (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Moreno JI, Martín R, Castresana C (2005) Arabidopsis SHMT1, a serine hydroxymethyl- transferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress. Plant J 41:451–463

    Article  PubMed  CAS  Google Scholar 

  • Nakayama H, Yoshida K, Ono H et al (2000) Ectoine, the compatible solute of Halomonas elongata, confers hyperosmotic tolerance in cultured tobacco cells. Plant Physiol 122:1239–1247

    Article  PubMed  CAS  Google Scholar 

  • Niranjan B, Prasanta K, Subudhi NP (2006) cDNA-AFLP analysis reveals differential gene expression in response to salt stress in a halophyte Spartina alterniflora Loisel. Plant Sci 170:1141–1149

    Article  Google Scholar 

  • Pilon-Smits E, Ebskamp M, Paul MJ et al (1995) Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol 107:125–130

    PubMed  CAS  Google Scholar 

  • Pitcher LH, Zilinskas BA (1996) Overexpression of copper/zinc superoxide dismutase in the cytosol of transgenic tobacco confers partial resistance to ozone-induced foliar necrosis. Plant Physiol 110:583–588

    PubMed  CAS  Google Scholar 

  • Ruiz-Garcia AB, Sendra R, Galiana M et al (1998) HAT1 and HAT2 proteins are components of a yeast nuclear histone acetyltransferase enzyme specific for free histone H4. J Biol Chem 273:12599–12605

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer HJ, Forstheoefel NR, Cushman JC (1995) Identification of enhancer and silencer regions involved in salt responsive expression of Crassulacean acid metabolism (CAM) genes in the facultative halophyte Mesembryanthemum crystallinum. Plant Mol Biol 28:205–218

    Article  PubMed  CAS  Google Scholar 

  • Sheen J (1996) Ca2+-dependent protein kinases and stress signal transduction in plants. Science 13(274):1900–1902

    Article  Google Scholar 

  • Sheveleva E, Chmara W, Bohnert HJ et al (1997) Increased salt and drought tolerance by d-ononitol production in transgenic Nicotiana tabacum L. Plant Physiol 115:1211–1219

    PubMed  CAS  Google Scholar 

  • Song CP, Guo Y, Qiu Q, et al. (2004) A probable Na+ (K+)/H+ exchanger on the chloroplast envelope functions in pH homeostasis and chloroplast development in Arabidopsis thaliana. Proceedings of the National Academy of Sciences 101:10211–10216

    Google Scholar 

  • Steven van N, Philip L (2003) The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function. BMC Genomics 4:50

    Article  Google Scholar 

  • Tester M, Davenport R (2003) Na+ transport and Na+ tolerance in higher plants. Ann Bot 91:503–527

    Article  PubMed  CAS  Google Scholar 

  • Torii KU (2004) Leucine-rich repeat receptor kinases in plants: structure, function, and signal transduction pathways. Int Rev Cytol 234:1–46

    Article  PubMed  CAS  Google Scholar 

  • Vera-Estrella R, Barkla BJ, Garcı′a-Ramı′rez L et al (2005) Salt stress in Thellungiella halophila activates Na+ transport mechanisms required for salinity tolerance. Plant Physiol 139:1507–1517

    Article  PubMed  CAS  Google Scholar 

  • Vernon DM, Ostrem JA, Bohnert HJ (1993) Stress perception and response in a facultative halophyte: the regulation of salinity induced genes in Mesembryanthemum crystallinum. Plant Cell Environ 16:437–444

    Article  CAS  Google Scholar 

  • Wang D, Pei K, Fu Y et al (2007) Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene 394:13–24

    Article  PubMed  CAS  Google Scholar 

  • Yin JL, Zhou CL (2000) Introduction and Culture of halophyte Kosteletzkya virginica. Jiangsu Agric Sci 6:29–31 (in Chinese)

    Google Scholar 

Download references

Acknowledgments

This research was funded by “11th five-year-plan” of Chinese National Science and Technology Program (2006BAD09A04; 2006BAD09A08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Qin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, YQ., Tian, ZY., Qin, GY. et al. Gene expression of halophyte Kosteletzkya virginica seedlings under salt stress at early stage. Genetica 137, 189–199 (2009). https://doi.org/10.1007/s10709-009-9384-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-009-9384-9

Keywords

Navigation