, 137:19 | Cite as

Population genetic models of duplicated genes

  • Hideki Innan


Various population genetic models of duplicated genes are introduced. The problems covered in this review include the fixation process of a duplicated copy, copy number polymorphism, the fates of duplicated genes and single nucleotide polymorphism in duplicated genes. Because of increasing evidence for concerted evolution by gene conversion, this review introduces recently developed gene conversion models. In the first half, models assuming independent evolution of duplicated genes are introduced, and then the effect of gene conversion is considered in the second half.


Gene duplication Population genetics Selection Mutation Adaptive evolution Theory 



This work was supported by grants from the Graduate University for Advanced Studies and the Japan Society for the Promotion of Science.


  1. Arguello JR, Chen Y, Yang S, Wang W, Long M (2006) Origination of an X-linked testes chimeric gene by illegitimate recombination in Drosophila. PLoS Genet 2:e77PubMedCrossRefGoogle Scholar
  2. Arnheim N (1983) Concerted evolution of multigene families. In: Nei M, Koehn RK (eds) Evolution of genes and proteins. Sinauer, Sunderland, pp 38–61Google Scholar
  3. Avent ND, Reid ME (2000) The Rh blood group system: a review. Blood 95:375–387PubMedGoogle Scholar
  4. Bailey GS, Poulter RTM, Stockwell PA (1978) Gene duplication in tetraploid fish: model for gene silencing at unlinked duplicated loci. Proc Natl Acad Sci USA 75:5575–5579PubMedCrossRefGoogle Scholar
  5. Bailey JA, Gu Z, Clark RA, Reinert K, Samonte RV, Schwartz S, Adams MD, Meyers EW, Li PW, Eichler EE (2002) Recent segmental duplications in the human genome. Science 297:1003–1007PubMedCrossRefGoogle Scholar
  6. Baltimore D (1981) Gene conversion: some implications for immunoglobulin genes. Cell 24:592–594PubMedCrossRefGoogle Scholar
  7. Blanc G, Wolf KH (2005) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicated genes. Curr Opin Plant Biol 8:135–141CrossRefGoogle Scholar
  8. Brown DD, Wensink PC, Jordan E (1972) A comparison of the ribosomal DNA’s of Xenopus laevis and Xenopus mulleri: the evolution of tandem genes. J Mol Biol 63:57–73PubMedCrossRefGoogle Scholar
  9. Charlesworth D, Mable BK, Schierup MH, Bartolomé C, Awadalla P (2003) Diversity and linkage of genes in the self-incompatibility gene family in Arabidopsis lyrata. Genetics 164(4):1519–1535Google Scholar
  10. Clark AG (1994) Invasion and maintenance of a gene duplication. Proc Natl Acad Sci USA 91:2950–2954PubMedCrossRefGoogle Scholar
  11. Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper & Row, New YorkGoogle Scholar
  12. Dover G (1982) Molecular drive: a cohesive mode of species evolution. Nature 299:111–117PubMedCrossRefGoogle Scholar
  13. Drouin G (2002) Characterization of the gene conversions between the multigene family members of the yeast genome. J Mol Evol 55:14–23PubMedCrossRefGoogle Scholar
  14. Elder Jr JF, Turner BJ (1995) Concerted evolution of repetitive DNA sequences in eukaryotes. Q Rev Biol 70:297–320PubMedCrossRefGoogle Scholar
  15. Emerson JJ, Cardoso-Moreira M, Borevitz JO, Long M (2008) Natural selection shapes genome-wide patterns of copy-number polymorphism in Drosophila melanogaster. Science 320:1629–1631PubMedCrossRefGoogle Scholar
  16. Ewens WJ (2004) Mathematical population genetics. I. Theoretical introduction. Springer-Verlag, New YorkGoogle Scholar
  17. Ezawa K, Oota S, Saitou N (2006) Genome-wide search of gene conversions in duplicated genes of mouse and rat. Mol Biol Evol 23:927–940PubMedCrossRefGoogle Scholar
  18. Fisher RA (1930) The genetical theory of natural selection. Oxford University Press, OxfordGoogle Scholar
  19. Fisher RA (1935) The sheltering of lethals. Am Nat 69:446–455CrossRefGoogle Scholar
  20. Force A, Lynch M, Pickett FB, Amores A, Yan Y-I, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545PubMedGoogle Scholar
  21. Fu Y-X, Li W-H (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709PubMedGoogle Scholar
  22. Fu Y-X, Li W-H (1999) Coalescing into the 21st century: an overview and prospects of coalescent theory. Theor Popul Biol 56:1–10PubMedCrossRefGoogle Scholar
  23. Gangloff S, Zou H, Rothstein R (1996) Gene conversion plays the major role in controlling the stability of large tandem repeats in yeast. EMBO J 15:1715–1725PubMedGoogle Scholar
  24. Gao L-Z, Innan H (2004) Very low gene duplication rate in the yeast genome. Science 306:1367–1370PubMedCrossRefGoogle Scholar
  25. Goldman AS, Lichten M (1996) The efficiency of meiotic recombination between dispersed sequences in Saccharomyces cerevisiae depends upon their chromosomal location. Genetics 144:43–55PubMedGoogle Scholar
  26. Gu Z, Cavalcanti A, Chen F-C, Bouman P, Li WH (2002) Extent of gene duplication in the genomes of Drosophila:nematode, and yeast. Mol Biol Evol 19:256–262PubMedGoogle Scholar
  27. Haldane JBS (1933) The part played by recurrent mutation in evolution. Am Nat 67:5–19CrossRefGoogle Scholar
  28. Harris S, Rudnicki K, Haber J (1993) Gene conversions and crossing over during homologous and homeologous ectopic recombination in Saccharomyces cerevisiae. Genetics 135:5–16PubMedGoogle Scholar
  29. Hartl DL, Clark AG (2006) Principles of population genetics. Sinauer Associates Inc, SunderlandGoogle Scholar
  30. Hein J, Schierup MH, Wiuf C (2005) Gene genealogies, variation and evolution: a primer in coalescent theory. Oxford University Press, OxfordGoogle Scholar
  31. Hillis DM, Moritz C, Porter CA, Baker RJ (1991) Evidence for biased gene conversion in concerted evolution of ribosomal DNA. Science 251:308–310PubMedCrossRefGoogle Scholar
  32. Hudson RR (1983) Testing the constant-rate neutral allele model with protein sequence data. Evolution 37:203–217CrossRefGoogle Scholar
  33. Hudson RR (1990) Gene genealogies and the coalescent process. In: Futuyma D, Antonovics J (eds) Oxford surveys in evolutionary biology, vol 7. Oxford University Press, Oxford, pp 1–43Google Scholar
  34. Hudson RR (2002) Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics 18:337–338PubMedCrossRefGoogle Scholar
  35. Hughes AL (1994) The evolution of functionally novel proteins after gene duplication. Proc R Soc Lond B 256:119–124CrossRefGoogle Scholar
  36. Hughes MK, Hughes AL (1993) Evolution of duplicate genes in a tetraploid animal, Xenopus laevis. Mol Biol Evol 10:1360–1369PubMedGoogle Scholar
  37. Innan H (2002) A method for estimating the mutation, gene conversion and recombination parameters in small multigene families. Genetics 161:865–872PubMedGoogle Scholar
  38. Innan H (2003a) The coalescent and infinite-site model of a small multigene family. Genetics 163:803–810PubMedGoogle Scholar
  39. Innan H (2003b) A two-locus gene conversion model with selection and its application to the human RHCE and RHD genes. Proc Natl Acad Sci USA 100:8793–8798PubMedCrossRefGoogle Scholar
  40. Innan H (2004) Theories for analyzing polymorphism data in duplicated genes. Genes Genet Syst 79(2):65–75PubMedCrossRefGoogle Scholar
  41. Jakobsson M, Scholz SW, Scheet P, Gibbs JR, VanLiere JM, Fung HC, Szpiech ZA, Degnan JH, Wang K, Guerreiro R, Bras JM, Schymick JC, Hernandez DG, Traynor BJ, Simon-Sanchez J, Matarin M, Britton A, van de Leemput J, Rafferty I, Bucan M, Cann HM, Hardy JA, Rosenberg NA, Singleton AB (2008) Genotype, haplotype and copy-number variation in worldwide human populations. Nature 451:998–1003PubMedCrossRefGoogle Scholar
  42. Jeffreys AJ, May CA (2004) Intense and highly localized gene conversion activity in human meiotic crossover hot spots. Nat Genet 36:151–156PubMedCrossRefGoogle Scholar
  43. Katju V, LaBeau EM, Lipinski KJ, Bergthorsson U (2008) Sex change by gene conversion in a Caenorhabditis elegans fog-2 mutant. Genetics 180:669–672PubMedCrossRefGoogle Scholar
  44. Kimura M (1957) Some problems of stochastic process in genetics. Ann Math Stat 28:882–901CrossRefGoogle Scholar
  45. Kimura M (1962) On the probability of fixation of mutant genes in a population. Genetics 47:713–719PubMedGoogle Scholar
  46. Kimura M (1969) The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics 61:893–903PubMedGoogle Scholar
  47. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, CambridgeGoogle Scholar
  48. Kimura M, King JL (1979) Fixation of a deleterious allele at one of two “duplicate” loci by mutation pressure and random drift. Proc Natl Acad Sci USA 76:2858–2861PubMedCrossRefGoogle Scholar
  49. Kimura M, Ohta T (1969) The average number of generations until fixation of a mutatnt gene in a finite population. Genetics 61:763–771PubMedGoogle Scholar
  50. Kingman JFC (1982) The coalescent. Stochast Proc Appl 13:235–248CrossRefGoogle Scholar
  51. Kondrashov FA, Koonin EV (2004) A common framework for understanding the origin of genetic dominance and evolutionary fates of gene duplication. Trends Genet 20:287–291PubMedCrossRefGoogle Scholar
  52. Kondrashov FA, Rogozin IB, Wolf YI, Koonin EV (2002) Selection in the evolution of gene duplications. Genome Biol 3: research0008.1–0008.9Google Scholar
  53. Kreitman M (2000) Methods to detect selection in populations with applications to the human. Ann Rev Genomics Hum Genet 1:539–559CrossRefGoogle Scholar
  54. Li W-H (1980) Rate of gene silencing at duplicated loci: a theoretical study and interpretation of data from tetraploid fish. Genetics 95:237–258PubMedGoogle Scholar
  55. Li WH (1997) Molecular evolution. Sinauer, SunderlandGoogle Scholar
  56. Lin YS, Byrnes JK, Hwang JK, Li WH (2006) Codon-usage bias versus gene conversion in the evolution of yeast duplicate genes. Proc Natl Acad Sci USA 103(39), 14412–14416Google Scholar
  57. Liskay RM, Stachelek JL (1983) Evidence for intrachromosomal gene conversion in cultured mouse cells. Cell 35:157–165PubMedCrossRefGoogle Scholar
  58. Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155PubMedCrossRefGoogle Scholar
  59. Lynch M, Conery JC (2001) Gene duplication and evolution. Science 293:1551aCrossRefGoogle Scholar
  60. Lynch M, Force A (2000) The probability of duplicate gene preservation by subfunctionalization. Genetics 154:459–473PubMedGoogle Scholar
  61. Lynch M, O’Hely M, Walsh B, Force A (2001) The probability of preservation of a newly arisen gene duplicate. Genetics 159:1789–1804PubMedGoogle Scholar
  62. Mano S, Innan H (2008) The evolutionary rate of duplicated genes under concerted evolution. Genetics 180:493–505PubMedCrossRefGoogle Scholar
  63. Marjoram P, Tavaré S (2006) Modern computational approaches for analysing molecular genetic variation data. Nat Rev Genet 7:759–770PubMedCrossRefGoogle Scholar
  64. Martinsohn JT, Sousa AB, Guethlein LA, Howard JC (1999) The gene conversion hypothesis of MHC evolution: a review. Immunogenetics 50(3–4):168–200CrossRefGoogle Scholar
  65. Maruyama T (1971) On the fixation probability of mutant genes in a subdivided population. Genet Res 15:221–225CrossRefGoogle Scholar
  66. McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654PubMedCrossRefGoogle Scholar
  67. Moore RC, Purugganan MD (2003) The early stages of duplicate gene evolution. Proc Natl Acad Sci USA 100:15682–15687PubMedCrossRefGoogle Scholar
  68. Nagylaki T (1983) Evolution of a finite population under gene conversion. Proc Natl Acad Sci USA 80:6278–6281PubMedCrossRefGoogle Scholar
  69. Nagylaki T (1984) Evolution of multigene families under interchromosomal gene conversion. Proc Natl Acad Sci USA 81:3796–3800PubMedCrossRefGoogle Scholar
  70. Nagylaki T, Petes TD (1982) Intrachromosomal gene conversion and the maintenance of sequence homogeneity among repeated genes. Genetics 100:315–337PubMedGoogle Scholar
  71. Nathans J, Thomas D, Hogness DS (1986) Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science 232(4747):193–202PubMedCrossRefGoogle Scholar
  72. Nei M, Roychoudhury AK (1973) Probability of fixation of nonfunctional genes at duplicate loci. Am Nat 107:362–372CrossRefGoogle Scholar
  73. Nielsen R (2005) Molecular signatures of matural selection. Ann Rev Genet 39:197–218PubMedCrossRefGoogle Scholar
  74. Nordborg M (2001) Coalescent theory. In: Balding DJ, Bishop MJ, Cannings C (eds) Handbook of statistical genetics. Wiley, Chichester, pp 179–212Google Scholar
  75. Nowak MA, Boerlijst MC, Cooke J, Smith JM (1997) Evolution of genetic redundancy. Nature 388:167–171PubMedCrossRefGoogle Scholar
  76. Ohno S (1970) Evolution by gene duplication. Springer-Verlag, New YorkGoogle Scholar
  77. Ohta T (1976) Simple model for treating evolution of multigene families. Nature 263:74–76PubMedCrossRefGoogle Scholar
  78. Ohta T (1980) Evolution and variation of multigene families. Springer-Verlag, BerlinGoogle Scholar
  79. Ohta T (1982) Allelic and nonallelic homology of a supergene family. Proc Natl Acad Sci USA 79:3251–3254PubMedCrossRefGoogle Scholar
  80. Ohta T (1983) On the evolution of multigene families. Theor Popul Biol 23:216–240PubMedCrossRefGoogle Scholar
  81. Ohta T (1987) Simulating evolution by gene duplication. Genetics 115:207–213PubMedGoogle Scholar
  82. Ohta T (1988) Further simulation studies on evolution by gene duplication. Evolution 42:375–386CrossRefGoogle Scholar
  83. Ohta T (1991a) Multigene families and the evolution of complexity. J Mol Evol 33:34–41PubMedCrossRefGoogle Scholar
  84. Ohta T (1991b) Role of diversifying selection and gene conversion in evolution of major histocompatibility complex loci. Proc Natl Acad Sci USA 88(15):6716–6720CrossRefGoogle Scholar
  85. Ohta T (1995) Gene conversion vs point mutation in generating variability at the antigen recognition site of major histocompatibility complex loci. Genetics 41:115–119Google Scholar
  86. Ohta T (1997) Role of gene conversion in generating polymorphisms at major histocompatibility complex loci. Hereditas 127(1-2): 97–103CrossRefGoogle Scholar
  87. Osada N, Innan H (2008) Duplication and gene conversion in the Drosophila melanogaster genome. PLoS Genet 4(12):e1000305Google Scholar
  88. Papp B, Pál C, Hurst LD (2003) Dosage sensitivity and the evolution of gene families in yeast. Nature 424:194–197PubMedCrossRefGoogle Scholar
  89. Parham P, Ohta T (1996) Population biology of antigen presentation by MHC class I molecules. Science 272(5258):67–74PubMedCrossRefGoogle Scholar
  90. Perry GH, Yang F, Marques-Bonet T, Murphy C, Fitzgerald T, Lee AS, Hyland C, Stone AC, Hurles ME, Tyler-Smith C, Eichler EE, Carter NP, Lee C, Redon R (2008) Copy number variation and evolution in humans and chimpanzees. Genome Res 18:1698–710PubMedCrossRefGoogle Scholar
  91. Petes TD, Hill CW (1988) Recombination between repeated genes in microorganisms. Annu Rev Genet 22:147–168PubMedCrossRefGoogle Scholar
  92. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W, et al (2006) Global variation in copy number in the human genome. Nature 444:444–454PubMedCrossRefGoogle Scholar
  93. Rovelet-Lecrux A, Hannequin D, Raux G, Le Meur N, Laquerriere A, Vital A, Dumanchin C, Feuillette S, Brice A, Vercelletto M, Dubas F, Frebourg T, Campion D (2006) APP locus duplication causes autosomal dominant early-onset alzheimer disease with cerebral amyloid angiopathy. Nat Genet 38:24–26PubMedCrossRefGoogle Scholar
  94. Rozen S, Skaletsky H, Marszalek JD, Minx PJ, Cordum HS, Waterston RH, Wilson RK, Page DC (2003) Abundant gene conversion between arms of palindromes in human and ape chromosomes. Nature 423:873–876PubMedCrossRefGoogle Scholar
  95. Sato K, Nishio T, Kimura R, Kusaba M, Suzuki T, Hatakeyama K, Ockendon DJ, Satta Y (2002) Coevolution of the S-locus genes SRK:SLG and SP11/SCR in Brassica oleracea and B. rapa. Genetics 162(2):931–940PubMedGoogle Scholar
  96. Sawyer S (1989) Statistical tests for gene conversion. Mol Biol Evol 6:526–538PubMedGoogle Scholar
  97. Sawyer SA, Hartl DL (1992) Population genetics of polymorphism and divergence. Genetics 132:1161–1176PubMedGoogle Scholar
  98. Schienman JE, Holt RA, Auerbach MR, Stewart CB (2006) Duplication and divergence of 2 distinct pancreatic ribonuclease genes in leaf-eating African and Asian colobine monkeys. Mol Biol Evol 23:1465–1479PubMedCrossRefGoogle Scholar
  99. Semple C, Wolfe KH (1999) Gene duplication and gene conversion in the Caenorhabditis elegans genome. J Mol Evol 48:555–564PubMedCrossRefGoogle Scholar
  100. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, Lincoln S, Crawley A, Hanson M, Maraganore D, et al (2003) α-synuclein locus triplication causes Parkinson’s disease. Science 302:841PubMedCrossRefGoogle Scholar
  101. Spofford JB (1969) Heterosis and the evolution of duplications. Am Nat 103:407–432CrossRefGoogle Scholar
  102. Sugino RP, Innan H (2005) Estimating the time to the whole-genome duplication and the duration of concerted evolution via gene conversion in yeast. Genetics 171(1): 63–69PubMedCrossRefGoogle Scholar
  103. Sugino R, Innan H (2006) Selection for more of the same product as a force to enhance concerted evolution of duplicated genes. Trends Genet 22:642–644PubMedCrossRefGoogle Scholar
  104. Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–460PubMedGoogle Scholar
  105. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedGoogle Scholar
  106. Takahata M, Maruyama T (1979) Polymorphism and loss of duplicate gene expression: a theoretical study with application to tetraploid fish. Proc Natl Acad Sci USA 76:4521–4525PubMedCrossRefGoogle Scholar
  107. Takuno S, Nishio T, Satta Y, Innan H (2008) Preservation of a pseudogene by gene conversion and diversifying selection. Genetics 180:517–531PubMedCrossRefGoogle Scholar
  108. Tavaré S (1984) Line-of-descent and genealogical processes, and their applications in population genetic models. Theor Popul Biol 26:119–164PubMedCrossRefGoogle Scholar
  109. Teshima KM, Innan H (2004) The effect of gene conversion on the divergence between duplicated genes. Genetics 166:1553–1560PubMedCrossRefGoogle Scholar
  110. Teshima KM, Innan H (2008) Neofunctionalization of duplicated genes under the pressure of gene conversion. Genetics 178:1385–1398PubMedCrossRefGoogle Scholar
  111. Thornton K, Long M (2005) Excess of amino acid substitutions relative to polymorphism between X-linked duplications in Drosophila melanogaster. Mol Biol Evol 22:273–284PubMedCrossRefGoogle Scholar
  112. Wagner A (2000) Robustness against mutations in genetic networks of yeast. Nat Genet 24:355–361PubMedCrossRefGoogle Scholar
  113. Walsh JB (1987) Sequence-dependent gene conversion: can duplicated genes diverge fast enough to escape conversion? Genetics 117:543–557PubMedGoogle Scholar
  114. Walsh JB (1995) How often do duplicated genes evolve new functions. Genetics 139:421–428PubMedGoogle Scholar
  115. Walsh B (2003) Population-genetic models of the fates of duplicate genes. Genetica 118:279–294PubMedCrossRefGoogle Scholar
  116. Watterson GA (1983) On the time for gene silencing at duplicate loci. Genetics 105:745–766PubMedGoogle Scholar
  117. Wiuf C, Hein J (2000) The coalescent with gene conversion. Genetics 155:451–462PubMedGoogle Scholar
  118. Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159PubMedGoogle Scholar
  119. Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292–298CrossRefGoogle Scholar
  120. Zhang P, Gu Z, Li WH (2003) Different evolutionary patterns between young duplicate genes in the human genome. Genome Biol 4:R56PubMedCrossRefGoogle Scholar
  121. Zhao Z, Hewett-Emmett D, Li W (1998) Frequent gene conversion between human red and green opsin genes. J Mol Evol 46:494–496PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Graduate University for Advanced StudiesHayamaJapan

Personalised recommendations