Abstract
Microsatellites are commonly used for mapping and population genetics because of their high heterozygosities and allelic variability (i.e., polymorphism). Microsatellite markers are generally more polymorphic than other types of molecular markers such as allozymes or SNPs because the insertions/deletions that give rise to microsatellite variability are relatively common compared to nucleotide substitutions. Nevertheless, direct evidence of microsatellite mutation rates (MMRs) is lacking in most vertebrate groups despite the importance of such estimates to key population parameters (e.g., genetic differentiation or θ = 4N e μ). Herein, we present empirical data on MMRs in eastern tiger salamanders (Ambystoma tigrinum tigrinum). We conducted captive breeding trials and genotyped over 1,000 offspring at a suite of microsatellite loci. These data on 7,906 allele transfers provide the first direct estimates of MMRs in amphibians, and they illustrate that MMRs can vary by more than an order of magnitude across loci within a given species (one locus had ten mutations whereas the others had none).
References
Balloux F, Lugon-Moulin N (2002) The estimation of population differentiation with microsatellite markers. Mol Ecol 11:155–165. doi:10.1046/j.0962-1083.2001.01436.x
Bos DH, Gopurenko D, Williams RN, Bulut Z, DeWoody JA (2008a) A reproductive disadvantage for MHC-divergent tiger salamanders (Ambystoma tigrinum tigrinum), Submitted
Bos DH, Gopurenko D, Williams RN, DeWoody JA (2008b) Inferring population history and demography using microsatellites, mitochondrial DNA, and major histocompatibility complex (MHC) genes. Evol Int J Org Evol 62:1458–1468. doi:10.1111/j.1558-5646.2008.00364.x
Brinkmann B, Klintschar M, Neuhuber F, Huhne J, Burkhard R (1998) Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am J Hum Genet 62:1408–1415. doi:10.1086/301869
Brohede J, Primmer CR, Moller A, Ellegren H (2002) Heterogeneity in the rate and pattern of germline mutation at individual microsatellite loci. Nucleic Acids Res 30:1997–2003. doi:10.1093/nar/30.9.1997
Buchan I (2004) Calculating Poisson confidence intervals in Excel. http://www.nwpho.org.uk/sadb/Poisson%20CI%20in%20spreadsheets.pdf. Accessed 25 Oct 2008
DeWoody JA, Avise JC (2000) Microsatellite variation in animal populations, with special emphasis on marine, freshwater, and anadromous fishes. J Fish Biol 56:461–473. doi:10.1111/j.1095-8649.2000.tb00748.x
Gopurenko D, Williams RN, McCormick CR, DeWoody JA (2006) Insights into the mating habits of the tiger salamander (Ambystoma tigrinum tigrinum) as revealed by genetic parentage analyses. Mol Ecol 15:1917–1928. doi:10.1111/j.1365-294X.2006.02904.x
Gopurenko D, Williams RN, DeWoody JA (2007) Reproductive and mating success in the small-mouthed salamander (Ambystoma texanum) estimated via microsatellite parentage analysis. Evol Biol 34:130–139. doi:10.1007/s11692-007-9009-0
Jones AG, Ardren WR (2003) Methods of parentage analysis in natural populations. Mol Ecol 12:2511–2523
Parra-Olea G, Recuero E, Zamudio KR (2007) Polymorphic microsatellite markers for Mexican salamanders of the genus Ambystoma. Mol Ecol Notes 7:818–820. doi:10.1111/j.1471-8286.2007.01714.x
Queller DC, Strassman JE, Hughes CR (1993) Microsatellites and kinship. Trends Ecol Evol 8:285–288. doi:10.1016/0169-5347(93)90256-O
Valdes AM, Slatkin M, Freimer NB (1993) Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics 133:737–749
Vazquez JF, Perez T, Albornoz J, Dominguez A (2000) Estimation of microsatellite mutation rates in Drosophila melanogaster. Genet Res Camb 76:323–326
Weber JL, Wong C (1993) Mutation of human short tandem repeats. Hum Mol Genet 2:1123–1128. doi:10.1093/hmg/2.8.1123
Williams RN, DeWoody JA (2004) Fluorescent dUTP helps characterize 10 novel tetranucleotide microsatellites from an enriched salamander (Ambystoma texanum) genomic library. Mol Ecol Notes 4:17–19. doi:10.1046/j.1471-8286.2003.00559.x
Williams RN, DeWoody JA (2008) Reproductive success and sexual selection in wild tiger salamanders (Ambystoma tigrinum), Submitted
Woodruff RC, Thompson JN (1992) Have premeiotic clusters of mutations been overlooked in evolutionary theory? J Evol Biol 5:457–464. doi:10.1046/j.1420-9101.1992.5030457.x
Yue GH, Beeckmann P, Geldermann H (2002) Mutation rate at swine microsatellite loci. Genetica 114:113–119. doi:10.1023/A:1015189921578
Yue GH, David L, Orban L (2007) Mutation rate and pattern of microsatellites in common carp (Cyprinus carpio L.). Genetica 129:329–331. doi:10.1007/s10709-006-0003-8
Acknowledgments
This research was funded by a grant from the National Science Foundation (DEB-0514815 to J.A.D.). S. Hucko, B. Reinhart, and G. Stevens provided valuable assistance, and we thank them. We also thank the Department of Ecology and Evolutionary Biology at Cornell University for hosting J.A.D. during the preparation of this manuscript.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bulut, Z., McCormick, C.R., Gopurenko, D. et al. Microsatellite mutation rates in the eastern tiger salamander (Ambystoma tigrinum tigrinum) differ 10-fold across loci. Genetica 136, 501–504 (2009). https://doi.org/10.1007/s10709-008-9341-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10709-008-9341-z