Genetica

, Volume 136, Issue 1, pp 97–107 | Cite as

Gene mapping in the wild with SNPs: guidelines and future directions

  • Jon Slate
  • Jake Gratten
  • Dario Beraldi
  • Jessica Stapley
  • Matt Hale
  • Josephine M. Pemberton
Article

Abstract

One of the biggest challenges facing evolutionary biologists is to identify and understand loci that explain fitness variation in natural populations. This review describes how genetic (linkage) mapping with single nucleotide polymorphism (SNP) markers can lead to great progress in this area. Strategies for SNP discovery and SNP genotyping are described and an overview of how to model SNP genotype information in mapping studies is presented. Finally, the opportunity afforded by new generation sequencing and typing technologies to map fitness genes by genome-wide association studies is discussed.

Keywords

Gene discovery QTL Linkage Mapping SNP Wild population 

References

  1. Adams RI, Hallen HE, Pringle A (2006) PRIMER NOTE. Using the incomplete genome of the ectomycorrhizal fungus Amanita bisporigera to identify molecular polymorphisms in the related Amanita phalloides. Mol Ecol Notes 6:218–220CrossRefGoogle Scholar
  2. Aerts J, Megens HJ, Veenendaal T, Ovcharenko I, Crooijmans R et al (2007) Extent of linkage disequilibrium in chicken. Cytogenet Genome Res 117:338–345CrossRefPubMedGoogle Scholar
  3. Aitken N, Smith S, Schwarz C, Morin PA (2004) Single nucleotide polymorphism (SNP) discovery in mammals: a targeted-gene approach. Mol Ecol 13:1423–1431CrossRefPubMedGoogle Scholar
  4. Almasy L, Blangero J (1998) Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 62:1198–1211CrossRefPubMedGoogle Scholar
  5. Backström N, Brandström M, Gustafsson L, Qvarnström A, Cheng H et al (2006a) Genetic mapping in a natural population of collared flycatchers (Ficedula albicollis): conserved synteny but gene order rearrangements on the avian Z chromosome. Genetics 174:377–386CrossRefPubMedGoogle Scholar
  6. Backström N, Qvarnström A, Gustafsson L, Ellegren H (2006b) Levels of linkage disequilibrium in a wild bird population. Biol Lett 2:435–438CrossRefPubMedGoogle Scholar
  7. Backstrom N, Fagerberg S, Ellegren H (2008) Genomics of natural bird populations: a gene-based set of reference markers evenly spread across the avian genome. Mol Ecol 17:964–980CrossRefPubMedGoogle Scholar
  8. Barker G, Batley J, O’Sullivan H, Edwards KJ, Edwards D (2003) Redundancy based detection of sequence polymorphisms in expressed sequence tag data using autoSNP. Bioinformatics 19:421–422CrossRefPubMedGoogle Scholar
  9. Beldade P, Rudd S, Gruber JD, Long AD (2006) A wing expressed sequence tag resource for Bicyclus anynana butterflies, an evo-devo model. BMC Genomics 7:130CrossRefPubMedGoogle Scholar
  10. Bell PA, Chaturvedi S, Gelfand CA, Huang CY, Kochersperger M et al (2002) SNPstream (R) UHT: ultra-high throughput SNP genotyping for pharmacogenomics and drug discovery. Biotechniques 70Google Scholar
  11. Beraldi D, McRae AF, Gratten J, Slate J, Visscher PM et al (2006) Development of a linkage map and mapping of phenotypic polymorphisms in a free-living population of Soay sheep (Ovis aries). Genetics 173:1521–1537CrossRefPubMedGoogle Scholar
  12. Beraldi D, McRae AF, Gratten J, Pilkington JG, Slate J et al (2007a) Quantitative trait loci (QTL) mapping of resistance to strongyles and coccidia in the free-living Soay sheep (Ovis aries). Int J Parasitol 37:121–129CrossRefPubMedGoogle Scholar
  13. Beraldi D, McRae AF, Gratten J, Slate J, Visscher P et al (2007b) Mapping QTL underlying fitness-related traits in a free-living sheep population. Evolution 61:1403–1416CrossRefPubMedGoogle Scholar
  14. Buetow KH, Edmonson M, MacDonald R, Clifford R, Yip P et al (2001) High-throughput development and characterization of a genomewide collection of gene-based single nucleotide polymorphism markers by chip-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Proc Natl Acad Sci USA 98:581–584CrossRefPubMedGoogle Scholar
  15. Butlin RK (2008) Population genomics and speciation. Genetica (this issue). doi:10.1007/s10709-008-9321-3 PubMedGoogle Scholar
  16. Cappuccio I, Pariset L, Ajmone-Marsan P, Dunner S, Cortes O et al (2006) Allele frequencies and diversity parameters of 27 single nucleotide polymorphisms within and across goat breeds. Mol Ecol Notes 6:992–997CrossRefGoogle Scholar
  17. Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L et al (2004) Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. American Journal Of Human Genetics 74:106–120CrossRefPubMedGoogle Scholar
  18. Chen WM, Abecasis GR (2006) Estimating the power of variance component linkage analysis in large pedigrees. Genet Epidemiol 30:471–484CrossRefPubMedGoogle Scholar
  19. Chen WM, Abecasis GR (2007) Family-based association tests for genomewide association scans. Am J Hum Genet 81:913–926CrossRefPubMedGoogle Scholar
  20. Chen K, McLellan MD, Ding L, Wendl MC, Kasai Y et al (2007) PolyScan: an automatic indel and SNP detection approach to the analysis of human resequencing data. Genome Res 17:659–666CrossRefPubMedGoogle Scholar
  21. Darvasi A, Weinreb A, Minke V, Weller JI, Soller M (1993) Detecting marker-Qtl linkage and estimating Qtl gene effect and map location using a saturated genetic-map. Genetics 134:943–951PubMedGoogle Scholar
  22. Docherty S, Butcher L, Schalkwyk L, Plomin R (2007) Applicability of DNA pools on 500 K SNP microarrays for cost-effective initial screens in genomewide association studies. BMC Genomics 8:214CrossRefPubMedGoogle Scholar
  23. Elfstrom CM, Smith CT, Seeb JE (2006) Thirty-two single nucleotide polymorphism markers for high-throughput genotyping of sockeye salmon. Mol Ecol Notes 6:1255–1259CrossRefGoogle Scholar
  24. Elfstrom CM, Smith CT, Seeb LW (2007) Thirty-eight single nucleotide polymorphism markers for high-throughput genotyping of chum salmon. Mol Ecol Notes 7:1211–1215CrossRefGoogle Scholar
  25. Ellegren H (2008) Sequencing goes 454 and takes large-scale genomics into the wild. Mol Ecol 17:1629–1631CrossRefPubMedGoogle Scholar
  26. Ellegren H, Sheldon BC (2008) Genetic basis of fitness differences in natural populations. Nature 452:169–175CrossRefPubMedGoogle Scholar
  27. Fahrenkrug SC, Freking BA, Smith TPL, Rohrer GA, Keele JW (2002) Single nucleotide polymorphism (SNP) discovery in porcine expressed genes. Anim Genet 33:186–195CrossRefPubMedGoogle Scholar
  28. Farnir F, Coppieters W, Arranz J-J, Berzi P, Cambisano N et al (2000) Extensive genome-wide linkage disequilibrium in cattle. Genome Res 10:220–227CrossRefPubMedGoogle Scholar
  29. Feau N, Bergeron M-J, Joly DL, Roussel F, Hamelin RC (2007) Detection and validation of EST-derived SNPs for poplar leaf rust Melampsora medusae f. sp. deltoidae. Mol Ecol Notes 7:1222–1228CrossRefGoogle Scholar
  30. Fredslund J, Madsen LH, Hougaard BK, Nielsen AM, Bertioli D, Sandal N, Stougaard J, Schauser L (2006) A general pipeline for the development of anchor markers for comparative genomics in plants. BMC genomics 7:207CrossRefPubMedGoogle Scholar
  31. George AW, Visscher PM, Haley CS (2000) Mapping quantitative trait loci in complex pedigrees: a two-step variance component approach. Genetics 156:2081–2092PubMedGoogle Scholar
  32. Goldstein DB (2001) Islands of linkage disequilibrium. Nat Genet 29:109–111CrossRefPubMedGoogle Scholar
  33. Gratten J, Beraldi D, Lowder BV, McRae AF, Visscher PM et al (2007) Compelling evidence that a single nucleotide substitution in TYRP1 is responsible for coat-colour polymorphism in a free-living population of Soay sheep. Proc R Soc B Biol Sci 274:619–626CrossRefGoogle Scholar
  34. Gratten J, Wilson AJ, McRae AF, Beraldi D, Visscher PM et al (2008) A localized negative genetic correlation constrains microevolution of coat color in wild sheep. Science 319:318–320CrossRefPubMedGoogle Scholar
  35. Gunderson KL, Steemers FJ, Lee G, Mendoza LG, Chee MS (2005) A genome-wide scalable SNP genotyping assay using microarray technology. Nat Genet 37:549CrossRefPubMedGoogle Scholar
  36. Hale M, Jensen H, Birkhead T, Burke T, Slate J (2008) A comparison of synteny and gene order on the homologue of chicken chromosome 7 between two passerine species and between passerines and chicken. Cytogenet Genome Res 121:120–129CrossRefPubMedGoogle Scholar
  37. Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324PubMedGoogle Scholar
  38. Haley CS, Knott SA, Elsen JM (1994) Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics 136:1195–1207PubMedGoogle Scholar
  39. Hansson B, Åkesson M, Slate J, Pemberton JM (2005) Linkage mapping reveals sex-dimorphic map distances in a passerine bird. Proc R Soc B Biol Sci 272:2289–2298CrossRefGoogle Scholar
  40. Hardenbol P, Yu F, Belmont J, MacKenzie J, Bruckner C et al (2005) Highly multiplexed molecular inversion probe genotyping: over 10, 000 targeted SNPs genotyped in a single tube assay. Genome Res 15:269–275CrossRefPubMedGoogle Scholar
  41. Heifetz EM, Fulton JE, O’Sullivan N, Zhao H, Dekkers JCM et al (2005) Extent and consistency across generations of linkage disequilibrium in commercial layer chicken breeding populations. Genetics 171:1173–1181CrossRefPubMedGoogle Scholar
  42. Hernandez-Sanchez J, Visscher P, Plastow G, Haley C (2003) Candidate gene analysis for quantitative traits using the transmission disequilibrium test: the example of the melanocortin 4-receptor in pigs. Genetics 164:637–644PubMedGoogle Scholar
  43. Hinten GN, Hale MC, Gratten J, Mossman JA, Lowder BV et al (2007) SNP-SCALE: SNP scoring by colour and length exclusion. Mol Ecol Notes 7:377–388CrossRefGoogle Scholar
  44. Hudson ME (2008) Sequencing breakthroughs for genomic ecology and evolutionary biology. Mol Ecol Resour 8:3–17CrossRefGoogle Scholar
  45. Irizarry K, Kustanovich V, Li C, Brown N, Nelson S et al (2000) Genome-wide analysis of single-nucleotide polymorphisms in human expressed sequences. Nat Genet 26:233–236CrossRefPubMedGoogle Scholar
  46. Jarne P, Lagoda PJL (1996) Microsatellites, from molecules to populations and back. Trends Ecol Evol 11:424–429CrossRefGoogle Scholar
  47. Kenta T, Gratten J, Hinten GN, Slate J, Butlin RK et al (2008) Multiplex SNP_SCALE: a cost:effective medium-throughput SNP genotyping method. Mol Ecol Resour (in press)Google Scholar
  48. Khatkar MS, Zenger KR, Hobbs M, Hawken RJ, Cavanagh JAL et al (2007) A primary assembly of a bovine haplotype block map based on a 15, 036-single-nucleotide polymorphism panel genotyped in Holstein-Friesian cattle. Genetics 176:763–772CrossRefPubMedGoogle Scholar
  49. Kruuk LEB (2004) Estimating genetic parameters in natural populations using the ‘animal model’. Philos Trans R Soc Lond B Biol Sci 359:873–890CrossRefPubMedGoogle Scholar
  50. Kruuk LEB, Hill WG (2008) Introduction. Evolutionary dynamics of wild populations: the use of long-term pedigree data. Proc R Soc B Biol Sci 275:593–596CrossRefGoogle Scholar
  51. Kruuk LEB, Slate J, Wilson AJ (2008) New answers for old questions: the evolutionary quantitative genetics of wild animal populations. Annu Rev Ecol Evol Syst. doi:10.1146/annurev.ecolsys.39.110707.173542 Google Scholar
  52. Leal SM, Yan K, Müller-Myhsok B (2005) SimPed: a simulation program to generate haplotype and genotype data for pedigree structures. Hum Hered 60:119CrossRefPubMedGoogle Scholar
  53. Lin R-C, Yao C-T, Lo W-S, Li S-H (2007) Characterization and the broad cross-species applicability of 20 anonymous nuclear loci isolated from the Taiwan Hwamei (Garrulax taewanus). Mol Ecol Notes 7:156–159CrossRefGoogle Scholar
  54. Luikart G, England PR, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4:981–994CrossRefPubMedGoogle Scholar
  55. Lyons L, Laughlin T, Copeland NG, Jenkins NA, Womack JE et al (1997) Comparative anchor tagged sequences (CATS) for integrative mapping of mammalian genomes. Nat Genet 15:47–56CrossRefPubMedGoogle Scholar
  56. Macgregor S, Zhao ZZ, Henders A, Nicholas MG, Montgomery GW et al (2008) Highly cost-efficient genome-wide association studies using DNA pools and dense SNP arrays. Nucl Acids Res 36(6):e35CrossRefPubMedGoogle Scholar
  57. Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133PubMedGoogle Scholar
  58. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380PubMedGoogle Scholar
  59. Marth GT, Korf I, Yandell MD, Yeh RT, Gu Z et al (1999) A general approach to single-nucleotide polymorphism discovery. Nat Genet 23:452CrossRefPubMedGoogle Scholar
  60. McKay SD, Schnabel RD, Murdoch BM, Matukumalli LK, Aerts J et al (2007) Whole genome linkage disequilibrium maps in cattle. BMC Genetics 8:74CrossRefPubMedGoogle Scholar
  61. Merilä J, Sheldon BC, Kruuk LEB (2001) Explaining stasis: microevolutionary studies in natural populations. Genetica 112:199–222CrossRefPubMedGoogle Scholar
  62. Morin PA, Luikart G, Wayne RK (2004) SNPs in ecology, evolution and conservation. Trends Ecol Evol 19:208–216CrossRefGoogle Scholar
  63. Morin PA, Aitken NC, Rubio-Cisneros N, Dizon AE, Mesnick S (2007) Characterization of 18 SNP markers for sperm whale (Physeter macrocephalus). Mol Ecol Notes 7:626–630CrossRefGoogle Scholar
  64. Morrell PL, Toleno DM, Lundy KE, Clegg MT (2005) Low levels of linkage disequilibrium in wild barley (Hordeum vulgare ssp spontaneum) despite high rates of self-fertilization. Proc Natl Acad Sci USA 102:2442–2447CrossRefPubMedGoogle Scholar
  65. Nielsen R (2005) Molecular signatures of natural selection. Annu Rev Genet 39:197–218CrossRefPubMedGoogle Scholar
  66. Nordborg M, Borevitz JO, Bergelson J, Berry CC, Chory J et al (2002) The extent of linkage disequilibrium in Arabidopsis thaliana. Nat Genet 30:190–193CrossRefPubMedGoogle Scholar
  67. Nsengimana J, Baret P, Haley CS, Visscher PM (2004) Linkage disequilibrium in the domesticated pig. Genetics 166:1395–1404CrossRefPubMedGoogle Scholar
  68. Palumbi S (1996) Nucleic acids II: the polymerase chain reaction. In: Hillis D, Moritz C, Mable B (eds) Molecular systematics. Sinauer, Sunderland, Massachusetts, pp 205–247Google Scholar
  69. Piepho HP (2000) Optimal marker density for interval mapping in a backcross population. Heredity 84:437–440CrossRefPubMedGoogle Scholar
  70. Quinlan AR, Stewart DA, Stromberg MP, Marth GT (2008) Pyrobayes: an improved base caller for SNP discovery in pyrosequences. Nat Methods 5:179CrossRefPubMedGoogle Scholar
  71. Reich DE, Cargill M, Bolk S, Ireland J, Sabeti PC et al (2001) Linkage disequilibrium in the human genome. Nature 411:199–204CrossRefPubMedGoogle Scholar
  72. Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR et al (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA 98:11479–11484CrossRefPubMedGoogle Scholar
  73. Rogers SM, Bernatchez L (2005) Integrating QTL mapping and genome scans towards the characterization of candidate loci under parallel selection in the lake whitefish (Coregonus clupeaformis). Mol Ecol 14:351–361CrossRefPubMedGoogle Scholar
  74. Rosenblum EB, Belfiore NM, Moritz C (2007) Anonymous nuclear markers for the eastern fence lizard, Sceloporus undulatus. Mol Ecol Notes 7:113–116CrossRefGoogle Scholar
  75. Ryynanen HJ, Primmer CR (2004) Primers for sequence characterization and polymorphism detection in the Atlantic salmon (Salmo salar) growth hormone 1 (GH1) gene. Mol Ecol Notes 4:664–667CrossRefGoogle Scholar
  76. Ryynanen HJ, Primmer CR (2006) Single nucleotide polymorphism (SNP) discovery in duplicated genomes: intron-primed exon-crossing (IPEC) as a strategy for avoiding amplification of duplicated loci in Atlantic salmon (Salmo salar) and other salmonid fishes. BMC Genomics 7:192CrossRefPubMedGoogle Scholar
  77. Schmid KJ, Sorensen TR, Stracke R, Torjek O, Altmann T et al (2003) Large-scale identification and analysis of genome-wide single-nucleotide polymorphisms for mapping in Arabidopsis thaliana. Genome Res 13:1250–1257CrossRefPubMedGoogle Scholar
  78. Slate J (2005) QTL mapping in natural populations: progress, caveats and future directions. Mol Ecol 14:363–379CrossRefPubMedGoogle Scholar
  79. Slate J (2008) Robustness of linkage maps in natural populations: a simulation study. Proc R Soc B Biol Sci 275:695–702CrossRefGoogle Scholar
  80. Slate J, Pemberton JM (2007) Admixture and patterns of linkage disequilibrium in a free-living vertebrate population. J Evol Biol 20:1415–1427CrossRefPubMedGoogle Scholar
  81. Slate J, Visscher PM, MacGregor S, Stevens D, Tate ML et al (2002) A genome scan for quantitative trait loci in a wild population of red deer (Cervus elaphus). Genetics 162:1863–1873PubMedGoogle Scholar
  82. Stapley J, Birkhead T, Burke T, Slate J (2008) A linkage map of the zebra finch Taeniopygia guttata provides new insights into avian genome evolution. Genetics 179:651–667CrossRefPubMedGoogle Scholar
  83. Stephens JC, Schneider JA, Tanguay DA, Choi J, Acharya T et al (2001) Haplotype variation and linkage disequilibrium in 313 human genes. Science 293:489–493CrossRefPubMedGoogle Scholar
  84. Stone RT, Grosse WM, Casas E, Smith TPL, Keele JW et al (2002) Use of bovine EST data and human genomic sequences to map 100 gene-specific bovine markers. Mamm Genome 13:211–215CrossRefPubMedGoogle Scholar
  85. Sutter NB, Eberle MA, Parker HG, Pullar BJ, Kirkness EF et al (2004) Extensive and breed-specific linkage disequilibrium in Canis familiaris. Genome Res 14:2388–2396CrossRefPubMedGoogle Scholar
  86. Syvanen AC (2001) Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat Rev Genet 2:930–942CrossRefPubMedGoogle Scholar
  87. Tang J, Vosman B, Voorrips R, van der Linden CG, Leunissen J (2006) QualitySNP: a pipeline for detecting single nucleotide polymorphisms and insertions/deletions in EST data from diploid and polyploid species. BMC Bioinformatics 7:438CrossRefPubMedGoogle Scholar
  88. Tobler AR, Short S, Andersen MR, Paner TM, Briggs JC et al (2005) The SNPlex genotyping system: a flexible and scalable platform for SNP genotyping. J Biomol Tech 16:398–406PubMedGoogle Scholar
  89. Van Tassell CP, Smith TPL, Matukumalli LK, Taylor JF, Schnabel RD et al (2008) SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nat Methods 5:247CrossRefPubMedGoogle Scholar
  90. Vera JC, Wheat CW, Fescemyer HW, Frilander MJ, Crawford DL et al (2008) Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol Ecol 17:1636–1647CrossRefPubMedGoogle Scholar
  91. Visscher PM, Hopper JL (2001) Power of regression and maximum likelihood methods to map QTL from sib-pair and DZ twin data. Ann Hum Genet 65:583–601CrossRefPubMedGoogle Scholar
  92. Weiss KM, Clark AG (2002) Linkage disequilibrium and the mapping of complex human traits. Trends Genet 18:19–24CrossRefPubMedGoogle Scholar
  93. Zhang K, Calabrese P, Nordborg M, Sun FZ (2002) Haplotype block structure and its applications to association studies: power and study designs. Am J Hum Genet 71:1386–1394CrossRefPubMedGoogle Scholar
  94. Zhang J, Wheeler DA, Yakub I, Wei S, Sood R et al (2005) SNPdetector: a software tool for sensitive and accurate SNP detection. PLoS Comput Biol 1:e53CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Jon Slate
    • 1
  • Jake Gratten
    • 1
  • Dario Beraldi
    • 2
  • Jessica Stapley
    • 1
  • Matt Hale
    • 1
    • 3
  • Josephine M. Pemberton
    • 2
  1. 1.Department of Animal & Plant SciencesUniversity of SheffieldSheffieldUK
  2. 2.Institute of Evolutionary BiologyUniversity of EdinburghEdinburghScotland, UK
  3. 3.Department of Forestry and Natural ResourcesPurdue UniversityIndianaUSA

Personalised recommendations