Genetica

, Volume 136, Issue 1, pp 5–11 | Cite as

Sequence signatures of a recent chromosomal rearrangement in Drosophila mojavensis

Article

Abstract

The X-chromosome inversion, Xe, distinguishes Drosophila mojavensis and D. arizonae. Earlier work mapped the breakpoints of this inversion to large intervals and provided hypotheses for the locations of the breakpoints within 3000-bp intergenic regions on the D. mojavensis genome sequence assembly. Here, we sequenced these regions directly in the putatively ancestral D. arizonae X-chromosome. We find that the two inversion breakpoints are near an inverted gene duplication and a common repetitive element, respectively, and these features were likely present in the non-inverted ancestral chromosome on the D. mojavensis lineage. Contrary to an earlier hypothesis, the inverted gene duplication appears to predate the inversion. We find no sequence similarity between the breakpoint regions in the D. mojavensis ancestor, excluding an ectopic-exchange model of chromosome rearrangements. We also found no evidence that staggered single-strand breaks caused the inversion. We suggest these features may have contributed to the chromosomal breakages resulting in this inversion.

Keywords

Chromosomal inversion Gene duplication Genome evolution Transposable element 

Abbreviation

bp

Basepair

kb

Thousand basepairs

dn

Nonsynonymous substitution rate

ds

Synonymous substitution rate

Supplementary material

10709_2008_9296_MOESM2_ESM.eps (5.3 mb)
Supplementary Fig. 1 Amino acid alignment of CG2056 in D. mojavnsis, D. arizonae and D. virilis. Amino acids selected for dn/ds-based sequence conservation analysis are highlighted in light orange (EPS 5411 kb)

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  2. Bailey JA, Baertsch R, Kent WJ, Haussler D, Eichler EE (2004) Hotspots of mammalian chromosomal evolution. Genome Biol 5:R23. doi:10.1186/gb-2004-5-4-r23 PubMedCrossRefGoogle Scholar
  3. Bertucci LA, Noor MAF (2001) Single fly RNA preparations for RT-PCR. Drosoph Inf Serv 84:166–168Google Scholar
  4. Cirera S, Martin-Campos JM, Segarra C, Aguade M (1995) Molecular characterization of the breakpoints of an inversion fixed between Drosophila melanogaster and D. subobscura. Genetics 139:321–326PubMedGoogle Scholar
  5. Cirulli ET, Noor MAF (2007) Localization and characterization of X chromosome inversion breakpoints separating Drosophila mojavensis and Drosophila arizonae. J Hered 98:111–114. doi:10.1093/jhered/esl065 PubMedCrossRefGoogle Scholar
  6. Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B et al (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450:203–218. doi:10.1038/nature06341 PubMedCrossRefGoogle Scholar
  7. Coghlan A, Eichler EE, Oliver SG, Paterson AH, Stein L (2005) Chromosome evolution in eukaryotes: a multi-kingdom perspective. Trends Genet 21:673–682. doi:10.1016/j.tig.2005.09.009 PubMedCrossRefGoogle Scholar
  8. Dobzhansky TG (1951) Genetics and the origin of species. Columbia University Press, New YorkGoogle Scholar
  9. Finnegan DJ (1989) Eukaryotic transposable elements and genome evolution. Trends Genet 5:103–107. doi:10.1016/0168-9525(89)90039-5 PubMedCrossRefGoogle Scholar
  10. Gilbert DG (2007) DroSpeGe: rapid access database for new Drosophila species genomes. Nucleic Acids Res 35:D480–D485. doi:10.1093/nar/gkl997 PubMedCrossRefGoogle Scholar
  11. Kirkpatrick M, Barton N (2006) Chromosome inversions, local adaptation and speciation. Genetics 173:419–434. doi:10.1534/genetics.105.047985 PubMedCrossRefGoogle Scholar
  12. Lewontin RC, Moore JA, Provine WB, Wallace B (1981) Dobzhansky’s genetics of natural populations, vol I–XLIII. Columbia University Press, New YorkGoogle Scholar
  13. Navarro A, Barton NH (2003) Chromosomal speciation and molecular divergence—accelerated evolution in rearranged chromosomes. Science 300:321–324. doi:10.1126/science.1080600 PubMedCrossRefGoogle Scholar
  14. Noor MAF, Grams KL, Bertucci LA, Reiland J (2001) Chromosomal inversions and the reproductive isolation of species. Proc Natl Acad Sci USA 98:12084–12088. doi:10.1073/pnas.221274498 PubMedCrossRefGoogle Scholar
  15. Ranz JM, Maurin D, Chan YS et al (2007) Principles of genome evolution in the Drosophila melanogaster species group. PLoS Biol 5:1366–1381. doi:10.1371/journal.pbio.0050152 CrossRefGoogle Scholar
  16. Richards S, Liu Y, Bettencourt BR et al (2005) Comparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and cis-element evolution. Genome Res 15:1–18. doi:10.1101/gr.3059305 PubMedCrossRefGoogle Scholar
  17. Rieseberg LH (2001) Chromosomal rearrangements and speciation. Trends Ecol Evol 16:351–358. doi:10.1016/S0169-5347(01)02187-5 PubMedCrossRefGoogle Scholar
  18. Ruiz A, Heed WB, Wasserman M (1990) Evolution of the Mojavensis cluster of Cactophilic Drosophila with descriptions of two new species. J Hered 81:30–42PubMedGoogle Scholar
  19. Schaeffer SW, Bhutkar A, McAllister BF, Matsuda M, Matzkin LM et al (2008) Polytene chromosomal maps of 11 Drosophila species: the order of genomic scaffolds inferred from genetic and physical maps. Genetics 179:1601–1655PubMedCrossRefGoogle Scholar
  20. Wasserman M (1962) Cytological studies of the repleta group of the genus Drosophila. V. The mulleri subgroup. Univ Tex Publ 6205:85–118Google Scholar
  21. White MJ (1978) Modes of speciation. Freeman, San FranciscoGoogle Scholar
  22. Yang ZH (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556PubMedGoogle Scholar
  23. Yang ZH (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591. doi:10.1093/molbev/msm088 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Biology Department, Biological SciencesDuke UniversityDurhamUSA

Personalised recommendations