Advertisement

Genetica

, Volume 135, Issue 3, pp 299–304 | Cite as

Chromosomal analysis in Cathartidae: distribution of heterochromatic blocks and rDNA, and phylogenetic considerations

  • Marcella Mergulhão Tagliarini
  • Julio Cesar Pieczarka
  • Cleusa Yoshiko Nagamachi
  • Jorge Rissino
  • Edivaldo Herculano C. de Oliveira
Article

Abstract

Three species of Cathartidae (Sarcoramphus papa, Cathartes aura and Cathartes burrovianus) were cytogenetically characterized by G- and C-banding. 18S–28S rDNA was used as a probe to map major ribosomal clusters. These species showed very similar karyotypes, with 2n = 80, 10 pairs of macrochromosomes, a submetacentric Z and a metacentric W chromosome. However, differences were found in the amount and distribution of heterochromatic blocks: S. papa showed heterochromatin only in the pericentromeric region and in chromosome W, while both species of Cathartes had heterochromatic blocks also in the long arm of two acrocentric pairs. Ribosomal clusters were found in a small pair in all three species. Karyotype analysis in Cathartidae revealed that this family has retained similarities to the putative avian ancestral karyotype, and placed Cathartidae in a more basal position in relation to Accipitridae and Falconidae. However, the cytogenetic data still cannot clarify the phylogenetic relationship between this family and other groups, such as Ciconiidae, considered its sister-group according to nucleic acid hybridization studies.

Keywords

Cathartidae New World Vultures Cytotaxonomy Chromosome banding rDNA probes Heterochromatin 

Notes

Acknowledgements

The authors are grateful to Dr. Vladimir Trifonov, for providing the r-DNA probes, Prof. M. A. Ferguson-Smith and Patricia O′Brien (Cambridge Resource Centre for Comparative Genomics, University of Cambridge) for laboratory facilities and manuscript revision, and to Criadouro Gavião Real (Capitão Poço, PA) and Parque Zoobotanico do Museu Emilio Goeldi (Belém, PA) for their kind assistance in supplying feather samples. This research was supported by CNPQ (472544/2006-3).

References

  1. Avise JC, Nelson WS, Sibley CG (1994) DNA sequence support for a close phylogenetic relationship between some storks and New World Vultures. Proc Natl Acad Sci 91:5173–5177PubMedCrossRefGoogle Scholar
  2. Bed’hom B, Coullinz P, Guillier-Geneciks Z, Moulim S, Bernheim A, Volobouev V (2003) Characterization of the atypical karyotype of the black-winged kite Elanus caeruleus (Falconiformes: Accipitridae) by means of classical and molecular cytogenetic techniques. Chromosome Res 11:335–343PubMedCrossRefGoogle Scholar
  3. Cracraft J (1981) Toward a phylogenetic classification of the recent birds of the world (Classe Aves). Auk 98:681–714Google Scholar
  4. Daniels LM, Delany ME (2003) Molecular and cytogenetic organization of the 5S ribosomal DNA array in chicken (Gallus gallus). Chromosome Res 11:305–317PubMedCrossRefGoogle Scholar
  5. De Boer LEM (1975) Karyological heterogeneity in the Falconiformes (aves). Experientia 31:1138–1139PubMedCrossRefGoogle Scholar
  6. De Boer LEM (1976) The somatic chromosomes of 16 species of Falconiformes (Aves) and the karyological relationships of the order. Genetica 46:77–113CrossRefGoogle Scholar
  7. De Oliveira EHC, Habermann F, Lacerda O, Sbalqueiro IJ, Wienberg J, Muller S (2005) Chromosome reshuffling in birds of prey: the karyotypes of the worlds largest eagle (Harpy eagle, Harpia harpyja) compared to that of the chicken (Gallus gallus). Chromosoma 114:338–343PubMedCrossRefGoogle Scholar
  8. Francisco MR, Galleti PM (2000) Fist karyotypical description of two American Ciiconiform birds, Mycteria americana (Ciiconidae) and Platalea ajaja (Threskiornithidae) and its significance for the chromosome evolucionary and biological conservation approaches. Genet Mol Biol 23(4):799–801CrossRefGoogle Scholar
  9. Garrod AH (1873) On certain muscles of the thigh of birds and on their value in classification. Proc Zool Soc Lond 1873:626–644Google Scholar
  10. Griffiths CS (1994) Monophyly of the Falconiformes based on the syringeal morphology. Auk 111:787–805Google Scholar
  11. Gunski RJ, Giannoni ML (1998) Nucleolar organizer regions and a new chromosome number for Rhea americana (Aves: Rheiformes). Genet Mol Biol 21(2):207–210CrossRefGoogle Scholar
  12. Härlid A, Janke A, Arnason U (1998) The complete mitochondrial genome of Rhea americana and early avian divergences. J Mol Evol 46:669–679PubMedCrossRefGoogle Scholar
  13. Hudson GE (1948) Studies on the muscles of the pelvic appendage in birds II: the heterogeneous Order Falconiformes. Am Midl Nat 39(1):102–127CrossRefGoogle Scholar
  14. König C (1982) Zur systematischen Stellung der Neuweltgeier (Cathartidae). J Ornithol 123:259–267CrossRefGoogle Scholar
  15. Ladjali-Mohammedi K, Bitgood JJ, Tixier-Boichard M, Ponce de Leon FA (1999) International System for Standardized Avian Karyotypes (ISSAK): standardized banded karyotypes of the domestic fowl (Gallus domesticus). Cytogenet Cell Genet 86:271–276PubMedCrossRefGoogle Scholar
  16. Ligon JD (1967) Relationships of the cathartid vultures. Occas Pap Mus Zool Univ Mich 651:1–56Google Scholar
  17. Nishida C, Sasaki M (1980) A preliminary note on the nucleolus organizing regions of metaphase chromosomes in five species of cranes (Aves:Gruiformes). Chrom Inf Serv 28:12–14Google Scholar
  18. Padilla JA, Martinez-Trancon M, Rabasco A, Fernandez-Garcia JL (1999) The karyotype of the Iberian imperial eagle (Aquila adalberti) analyzed by classical and DNA replication banding. Cytogenet Cell Genet 84:61–66PubMedCrossRefGoogle Scholar
  19. Raudsepp T, Houck ML, O’Brian PC, Fergunson-Smith MA, Ryder OA, Chowdhary BP (2002) Cytogenetic analysis of California Condor (Gymnogyps californianus) chromosomes: comparison with chicken (Gallus gallus) macrochromosomes. Cytogenet Genome Res 98:54–60PubMedCrossRefGoogle Scholar
  20. Roslik GV, Kryukov AP (2001) A karyological study of some Corvine birds (Corvidae, Aves). Russ J Genet 37(7):962–973CrossRefGoogle Scholar
  21. Sasaki M, Ikeuchi T, Makino S (1968) A feather pulp culture for avian chromosomes with notes on the chromosomes of the peafowl and the ostrich. Experientia 24:1923–1929Google Scholar
  22. Seabright M (1971) A rapid banding technique for human chromosomes. Lancet 2:971–972PubMedCrossRefGoogle Scholar
  23. Seibold I, Helbig AJ (1995) Evolutionary history of new and old world vultures inferred from nucleotide sequences of the mitochondrial cytochrome b gene. Philos Trans R Soc Lond B Biol Sci 350:163–178PubMedCrossRefGoogle Scholar
  24. Shetty S, Griffin DK, Graves JA (1999) Comparative painting reveals strong chromosome homology over 80 million years of bird evolution. Chromosome Res 7:289–295PubMedCrossRefGoogle Scholar
  25. Shibusawa M, Nishibori M, Nishida-Umehara C, Tsudzuki M, Masabanda J, Griffin DK, Matsuda Y (2004) Karyotypic evolution in the Galliformes: an examination of the process of karyotypic evolution by comparison of the molecular cytogenetic findings with the molecular phylogeny. Cytogenet Genome Res 106:111–119PubMedCrossRefGoogle Scholar
  26. Sibley CG, Ahlquist JA (1990) Phylogeny and classification of birds: a study in molecular evolution. Yale University Press, New HavenGoogle Scholar
  27. Slikas B (1997) Phylogeny of the Avian family Ciconiidae (Storks) based on cytochrome b sequences and DNA–DNA hybridization. Acad Natl Sci 8:275–300Google Scholar
  28. Small MF, Hogan KM, Scudday JF (1993) The karyotype of the white winged dove. Condor 95:1051–1053CrossRefGoogle Scholar
  29. Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 83:438–442CrossRefGoogle Scholar
  30. Takagi N, Sasaki M (1974) A phylogenetic study of birds karyotypes. Chromosoma (Berl) 46:91–120CrossRefGoogle Scholar
  31. Wang N, Shoffner RN (1974) Trypsin G- and C-banding for interchange analysis and sex identification in the chicken. Chromosoma 47(1):61–69PubMedCrossRefGoogle Scholar
  32. Wetmore A (1960) A classification of the birds of the world. Smithson Misc Collect 139(11):1–37Google Scholar
  33. Williams RM, Benirshke K (1976) The chromosomes of four species of Falconiformes. Experientia 32:310–311CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Marcella Mergulhão Tagliarini
    • 1
    • 2
  • Julio Cesar Pieczarka
    • 1
  • Cleusa Yoshiko Nagamachi
    • 1
  • Jorge Rissino
    • 1
  • Edivaldo Herculano C. de Oliveira
    • 1
  1. 1.Laboratório de Citogenética, Centro de Ciências Biológicas, Instituto de Ciências BiológicasUniversidade Federal do ParáBelemBrazil
  2. 2.Pós Graduação em Neurociências e Biologia Celular, Instituto de Ciências BiológicasUFPABelemBrazil

Personalised recommendations