Skip to main content
Log in

Bayesian analysis of genetic architecture of quantitative trait using data of crosses of multiple inbred lines

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Using the data of crosses of multiple of inbred lines for mapping QTL can increase QTL detecting power compared with only cross of two inbred lines. Although many fixed-effect model methods have been proposed to analyze such data, they are largely based on one-QTL model or main effect model, and the interaction effects between QTL are always neglected. However, effectively separating the interaction effects from the residual error can increase the statistical power. In this article, we both extended the novel Bayesian model selection method and Bayesian shrinkage estimation approaches to multiple inbred line crosses. With two extensions, interacting QTL are effectively detected with high solution; in addition, the posterior variances for both main effects and interaction effects are also subjected to full Bayesian estimate, which is more optimal than two step approach involved in maximum-likelihood. A series of simulation experiments have been conducted to demonstrate the performance of the methods. The computer program written in FORTRAN language is freely available on request.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Christianse MJ, Feenstra B, Skovgaard IM, Andersen SB (2006) Genetic analysis of resistance to yellow rust in hexaploid wheat using a mixture model for multiple crosses. Theor Appl Genet 112:581–591

    Article  CAS  Google Scholar 

  • Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97–109

    Article  Google Scholar 

  • Kao CH, Zeng Z-B, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216

    PubMed  CAS  Google Scholar 

  • Li RH, Lyons MA, Wittenburg H, Paigen B, Churchill GA (2005) Combining data from multiple inbred line crosses improves the power and resolution of quantitative trait loci mapping. Genetics 169:1699–1709

    Google Scholar 

  • Liu Y, Zeng Z-B (2000) A general mixture model approach for mapping quantitative trait loci from diverse cross designs involving multiple inbred lines. Genet Res 75:345–355

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Jansen GB, Lin CY (2004) Quantitative trait loci mapping for dairy cattle production traits using a maximum likelihood method. J Dairy Sci 87:491–500

    Article  PubMed  CAS  Google Scholar 

  • Metropolis RN, Rosenbluth AW, Teller MN, Teller AH (1953) Equations of state calculations by fast computing machines. J Chem Phys 21:1087–1091

    Article  CAS  Google Scholar 

  • Muranty H (1996) Power of tests for quantitative trait loci detection using full-sib families in different schemes. Heredity 76:156–165

    Article  Google Scholar 

  • Rebai A, Goffinet B (1993) Power of tests for QTL detection using replicated progenies derived from a diallel cross. Theor Appl Genet 86:1014–1022

    Article  Google Scholar 

  • Satagopan JM, Yandell BS, Newton MA, Osborn TC (1996) A Bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo. Genetics 144:805–816

    PubMed  CAS  Google Scholar 

  • Sillanpää MJ, Arjas E (1998) Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data. Genetics 148:1373–1388

    PubMed  Google Scholar 

  • Sillanpää MJ, Corander J (2002) Model choice in gene mapping: what and why. Trends Genet 18:301–307

    Article  PubMed  Google Scholar 

  • Uimari P, Hoeschele I (1997) Mapping linked quantitative trait loci using Bayesian method analysis and Markov chain Monte Carlo algorithms. Genetics 146:735–743

    PubMed  CAS  Google Scholar 

  • Wang H, Zhang YM, Li X, Masinde GL, Mohan S, Baylink DJ, Xu S (2005) Bayesian shrinkage estimation of quantitative trait loci parameters. Genetics 170:465–480

    Article  PubMed  CAS  Google Scholar 

  • Xu S (1998) Mapping quantitative trait loci using multiple families of line crosses. Genetics 148:517–524

    PubMed  CAS  Google Scholar 

  • Yi N (2004) A unified Markov chain Monte Carlo framework for mapping multiple quantitative trait loci. Genetics 167:967–975

    Article  PubMed  CAS  Google Scholar 

  • Yi N, Xu S (2001) Bayesian mapping of quantitative trait loci under complicated mating designs. Genetics 157:1759–1771

    PubMed  CAS  Google Scholar 

  • Yi N, Xu S (2002) Linkage analysis of quantitative trait loci in multiple line crosses. Genetica 114:217–230

    Article  PubMed  CAS  Google Scholar 

  • Yi N, Allison DB, Xu S (2003) Bayesian model choice and search strategies for mapping multiple epistatic quantitative trait loci. Genetics 165:867–883

    PubMed  CAS  Google Scholar 

  • Yi N, Xu S, George V, Allison DB (2004) Mapping multiple quantitative trait loci for ordinal traits. Behav Genet 34:3–15

    Article  PubMed  Google Scholar 

  • Yi N, Yandell BS, Churchill GA, Allison DB, Eisen EJ, Pomp D (2005) Bayesian mode selection for genome-wide epistatic quantitative trait loci analysis. Genetics 170:1333–1344

    Article  PubMed  CAS  Google Scholar 

  • Zhang YM, Xu S (2005) Advanced statistical methods for detecting multiple quantitative trait loci. Recent Res Devel Genet Breeding 2:1–23

    Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers for their criticisms and comments which have greatly improved the presentation of the manuscript. The research was supported by Heilongjiang August First Land Reclamation University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Fang.

Appendix: conditional posterior distributions

Appendix: conditional posterior distributions

Conditional posterior distribution of model effects

The conditional posterior distributions of all model effects are normal. For popular mean u, the conditional posterior distribution of it follows

$$ u\sim N\left( {\left( {1/nm} \right)\sum_{i=1,j=1}^{n,m} {(y_{ij} -g_{ij} ),\left( {1/mn} \right)\sigma _e^2 } } \right). $$
(A1)

If the number of individuals in each cross is different, n will be substituted by n j , and the rules holds in all steps. For cross specific effect, the conditional posterior distribution of it is

$$ c_j \sim N\left( {\sum_{i=1}^n {(y_{ij} -g_{ij} +c_j )/n,\left( {1/mn} \right)\sigma _e^2 },\;\;\left( {1/mn} \right)\sigma _e^2 } \right), $$
(A2)

for j = 1,...,m. The conditional posterior distribution for main effect b jq is

$$ b_{jq} \sim N\left( {\left(\sigma _e^2 \sigma _q^{-2} +\sum_{i=1}^n {x_{ij,q}^2 } \right)^{-1}\sum_{i=1}^n {x_{ij,q} (y_{ij} +\gamma _q x_{ij,q} b_{jq} -g_{ij} )},\;\;\left(\sigma _e^2 \sigma _q^{-2} +\sum_{i=1}^n {x_{ij,q}^2 }\right )^{-1}\sigma _e^2 } \right), $$
(A3)

q = 1,...,K and j = 1,...,m, and for interaction effect w j,q_1 q_2 is

$$ \begin{aligned} w_{j,q_1 q_2}&\sim N\left(\left(\sigma _e^2 \sigma _{q_1 q_2 }^{-2} +\sum_{i=1}^n {x_{ij,q_1 q_2 }^2 } \right)^{-1}\sum_{i=1}^n {x_{ij,q_1 q_2 } (y_{ij} +\gamma _{q_1 q_2 } x_{ij,q_1 q_2 } w_{j,q_1 q_2 } -g_{ij})},\right.\\ &\left.\left(\sigma_e^2 \sigma_{q_1 q_2 }^{-2} +\sum_{i=1}^n{x_{ij,q_1 q_2}^2}\right)^{-1}\sigma_e^2\right),\\ \end{aligned} $$
(A4)

for q 1 = 1,...,K, q 2q 1 and j = 1,...,m.

Conditional posterior distribution of residual error σ 2 e

For the residual variance σ 2 e , the conditional posterior distribution is a scaled inverse chi-square, \(\sigma _e^2 \sim \chi ^{-2}(mn,SS_e ),\) where,

$$ SS_e =\sum_{i=1,j=1}^{n,m} {(y_{ij} -g_{ij} } )^{2}. $$
(A5)

Conditional posterior distribution of QTL genotypes

The conditional posterior distribution of QTL genotypes is

$$ p(x_{ij,q}=z\left| {y_{ij},}\right.m_j,m_{j+1},\lambda_j,\varvec{\gamma},x_{ij\cdot}, \varvec{\theta}) =\frac{p(y_{ij} \left|{\varvec{\gamma},x_{ij(-q)} },\right. x_{ij,q} =z,\varvec{\theta})\cdot p(x_{ij,q} =z\left| {\lambda _j,} \right. m_j,m_{j+1})}{\sum_{x_{ij,q}\in\{-1,1\}}p(y_{ij} \left| {\varvec{\gamma},x_{ij(-q)}},\right. x_{ij,q},\varvec{\theta})\cdot p(x_{ij,q}\left|{\lambda_j,} \right.m_j,m_{j+1})} $$
(A6)

where, z = −1 or 1, indicates two different genotypes of QTL.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, M., Jiang, D., Chen, X. et al. Bayesian analysis of genetic architecture of quantitative trait using data of crosses of multiple inbred lines. Genetica 134, 367–375 (2008). https://doi.org/10.1007/s10709-008-9244-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-008-9244-z

Keywords

Navigation