Skip to main content
Log in

The karyotype and 5S rRNA genes from Spanish individuals of the bat species Rhinolophus hipposideros (Rhinolophidae; Chiroptera)

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The karyotype of individuals of the species Rhinolophus hipposideros from Spain present a chromosome number of 2n = 54 (NFa = 62). The described karyotype for these specimens is very similar to another previously described in individual from Bulgaria. However, the presence of one additional pair of autosomal acrocentric chromosomes in the Bulgarian karyotype and the differences in X chromosome morphology indicated that we have described a new karyotype variant in this species. In addition, we have analyzed several clones of 1.4 and 1 kb of a PstI repeated DNA sequence from the genome of R. hipposideros. The repeated sequence included a region with high identity with the 5S rDNA genes and flanking regions, with no homology with GenBank sequences. Search for polymerase III regulatory elements demonstrated the presence of type I promoter elements (A-box, Intermediate Element and C-box) in the 5S rDNA region. In addition, upstream regulatory elements, as a D-box and Sp1 binding sequences, were present in flanking regions. All data indicated that the cloned repeated sequences are the functional rDNA genes from this species. Finally, FISH demonstrated the presence of rDNA in nine chromosome pairs, which is surprising as most mammals have only one carrier chromosome pair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul A, Stephen F, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller A, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Baker RJ, Maltbie M, Owen JG, Hamilton MJ, Bradley RD (1992) Reduced number of ribosomal sites in bats: evidence for a mechanism to contain genome size. J Mammal 73:847–858

    Article  Google Scholar 

  • Barragán MJ, Martínez S, Marchal JA, Fernández R, Bullejos M, Díaz de la Guardia R, Sánchez A (2003) Pericentric satellite DNA sequences in Pipistrellus pipistrellus (Vespertilionidae; Chiroptera). Heredity 91:232–238

    Article  PubMed  CAS  Google Scholar 

  • Belcheva RG, Topashka-Ancheva MN, Bisserov V (1990) Karyological studies of Rhinolophus ferrumequinum and Rhinolophus hipposideros (Rhinolophidae, Chiroptera) from Bulgaria. Compt Rend Acad Bulg Sci 43:81–83

    Google Scholar 

  • Borodulina OR, Kramerov DA (2005) PCR-based approach to SINE isolation: simple and complex SINEs. Gene 349:197–205

    Article  PubMed  CAS  Google Scholar 

  • Bovey R (1949) Les chromosomes des Chiroptéres et des Insectivores. Rev Suisse Zool 56:371–460

    Google Scholar 

  • Capanna E, Manfredi Romanini MG (1971) Nuclear DNA content and morphology of the karyotype in certain palearctic Microchiroptera. Caryologia 24:471–482

    CAS  Google Scholar 

  • Capanna E, Civitelli MV, Conti L (1967) I cromosomi somatici del pipistrello Ferro di cavallo minore’ (Mammalia-Chiroptera). Rend Acc Naz Lincei 42:125–128

    Google Scholar 

  • Christensen K, Lomholt B, Hallenberg C, Nielsen KV (1998) Mink 5S rRNA genes map to 2q in three loci suggesting conservation of synteny with human 1q. Hereditas 128:17–20

    Article  PubMed  CAS  Google Scholar 

  • Drouin G, Moniz de Sá M (1995) The concerted evolution of 5S ribosomal genes linked to the repeat units of other multigene families. Mol Biol Evol 12:481–493

    PubMed  CAS  Google Scholar 

  • Eirín-López JM, Fernanda Ruiz M, González-Tizón AM, Martínez A, Sánchez L, Méndez J (2004) Molecular evolutionary characterization of the mussel Mytilus histone multigene family: first record of a tandemly repeated unit of five histone genes containing an H1 subtype with “orphon” features. J Mol Evol 58:131–144

    Article  PubMed  CAS  Google Scholar 

  • Fattajev MD (1978) Sravnitelnaja Kariologija někotorych rukokrylykh Azerbaidžana. PhD Thesis, Institute of Zoology, Baku

  • Frederiksen S, Andersen JH (2003) The external promoter in the guinea pig 5S rRNA gene is different from the rodent promoter. Hereditas 139:156–160

    Article  PubMed  Google Scholar 

  • Frederiksen S, Cao H, Lomholt B, Levan G, Hallenberg C (1997) The rat 5S rRNA bona fide gene repeat maps to chromosome 19q12→qter and the pseudogene repeat maps to 12q12. Cytogenet Cell Genet 76:101–106

    Article  PubMed  CAS  Google Scholar 

  • Hallenberg C, Frederiksen S (2001) Effect of mutations in the upstream promoter on the transcription of human 5S rRNA genes. Biochim Biophys Acta 1520:169–173

    PubMed  CAS  Google Scholar 

  • Hallenberg C, Nederby Nielsen J, Frederiksen S (1994) Characterization of 5S rRNA genes from mouse. Gene 142:291–295

    Article  PubMed  CAS  Google Scholar 

  • Hart RP, Folk WR (1982) Structure and organization of a mammalian 5 S gene cluster. J Biol Chem 257:11706–11711

    PubMed  CAS  Google Scholar 

  • Hsu TC, Spirito SE, Pardue ML (1975) Distribution of 18 + 28S ribosomal genes in mammalian genomes. Chromosoma 53:25–36

    Article  PubMed  CAS  Google Scholar 

  • Jensen LR, Frederiksen S (2000) The 5S rRNA genes in Macaca fascicularis are organized in two large tandem repeats. Biochim Biophys Acta 1492:537–542

    PubMed  CAS  Google Scholar 

  • Kriegs JO, Churakov G, Kiefmann M, Jordan U, Brosius J, Schmitz J (2006) Retroposed elements as archives for the evolutionary history of placental mammals. PLoS Biol 4:e91

    Article  PubMed  CAS  Google Scholar 

  • Leah R, Frederiksen S, Engberg J, Sorensen PD (1990) Nucleotide sequence of a mouse 5S rRNA variant gene. Nucleic Acids Res 18:7441

    Article  PubMed  CAS  Google Scholar 

  • Leite-Silva C, Santos N, Fagundes V, Yonenaga-Yassuda Y, De Souza MJ (2003) Karyotypic characterization of the bat species Molossus ater, M. molossus and Molossops planirostris (Chiroptera, Molossidae) using FISH and banding techniques. Hereditas 138:94–100

    Article  PubMed  Google Scholar 

  • Lo Y-MD, Mehal WZ, Fleming KA (1990) Incorporation of biotinylated dUTP. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 113–118

    Google Scholar 

  • Lomholt B, Christensen K, Hallenberg C, Frederiksen S (1995a) Porcine 5S rRNA genes map to 14q23 revealing syntenic relation to human HSPA-6 and -7. Mamm Genome 6:439–441

    Article  PubMed  CAS  Google Scholar 

  • Lomholt B, Frederiksen S, Nielsen JN, Hallenberg C (1995b) Additional assignment of the human 5S rRNA genes to chromosome region 1q31. Cytogenet Cell Genet 70:76–79

    Article  PubMed  CAS  Google Scholar 

  • Lomholt B, Frederiksen S, Jensen LR, Christensen K, Hallenberg C (1996) 5S rRNA genes in Macaca fascicularis map to chromosome 1p in three loci. Mamm Genome 7:451–453

    Article  PubMed  CAS  Google Scholar 

  • Lomholt B, Christensen K, Frederiksen S (2002) Guinea pig (Cavio cambayo) 5S rRNA genes map to 7q2, 20q2 and 30q2 shown by an R-banded karyotype with PNA-FISH. Hereditas 136:104–107

    Article  PubMed  Google Scholar 

  • Long EO, Dawid IB (1980) Repeated genes in eukaryotes. Annu Rev Biochem 49:727–764

    Article  PubMed  CAS  Google Scholar 

  • Marchal JA, Martínez S, Acosta MJ, Bullejos M, Díaz de la Guardia R, Sánchez A (2004) Characterization of an EcoRI family of satellite DNA from two species of the genus Eptesicus (Vespertilionidae; Chiroptera). Genetica 122:303–310

    Article  PubMed  CAS  Google Scholar 

  • Martins C, Wasko AP, Oliveira C, Porto-Foresti F, Parise-Maltempi PP, Wright JM, Foresti F (2002) Dynamics of 5S rDNA in the tilapia (Oreochromis niloticus) genome: repeat units, inverted sequences, pseudogenes and chromosome loci. Cytogenet Genome Res 98:78–85

    Article  PubMed  CAS  Google Scholar 

  • Matsubara K, Nishida-Umehara C, Tsuchiya K, Nukaya D, Matsuda Y (2004) Karyotypic evolution of Apodemus (Muridae, Rodentia) inferred from comparative FISH analyses. Chromosome Res 12:383–395

    Article  PubMed  CAS  Google Scholar 

  • Matsuda Y, Moriwaki K, Chapman VM, Hoi-Sen Y, Akbarzadeh J, Suzuki H (1994) Chromosomal mapping of mouse 5S rRNA genes by direct R-banding fluorescence in situ hybridization. Cytogenet Cell Genet 66:246–249

    Article  PubMed  CAS  Google Scholar 

  • Nielsen JN, Hallenberg C, Frederiksen S, Sorensen PD, Lomholt B (1993) Transcription of human 5S rRNA genes is influenced by an upstream DNA sequence. Nucleic Acids Res 21:3631–3636

    Article  PubMed  CAS  Google Scholar 

  • Paule MR, White RJ (2000) Survey and summary: transcription by RNA polymerases I and III. Nucleic Acids Res 28:1283–1298

    Article  PubMed  CAS  Google Scholar 

  • Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA 83:2934–2938

    Article  PubMed  CAS  Google Scholar 

  • Qumsiyeh MB, Schlitter DA, Disi AM (1986) New records and karyotypes of small mammals from Jordan. Z Säugetierkunde 51:139–146

    Google Scholar 

  • Qumsiyeh MB, Owen RD, Chesser RK (1988) Differential rates of genic and chromosomal evolution in bats of the family Rhinolophidae. Genome 30:326–335

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Santos N, Fagundes V, Yonenaga-Yassuda Y, De Souza MJ (2001) Comparative karyology of Brazilian vampire bats Desmodus rotundus and Diphylla ecaudata (Phyllostomidae, Chiroptera): banding patterns, base-specific fluorochromes and FISH of ribosomal genes. Hereditas 134:189–194

    Article  PubMed  CAS  Google Scholar 

  • Santos N, Fagundes V, Yonenaga-Yassuda Y, De Souza MJ (2002) Localization of rRNA genes in Phyllostomidae bats reveals silent NORs in Artibeus cinereus. Hereditas 136:137–143

    Article  PubMed  Google Scholar 

  • Sorensen PD, Frederiksen S (1991) Characterization of human 5S rRNA genes. Nucleic Acids Res 19:4147–4151

    Article  PubMed  CAS  Google Scholar 

  • Sorensen PD, Simonsen H, Frederiksen S (1990) Nucleotide sequence of a human 5S rRNA gene. Nucleic Acids Res 18:3060

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Moriwaki K, Sakurai S (1994) Sequences and evolutionary analysis of mouse 5S rDNAs. Mol Biol Evol 11:704–710

    PubMed  CAS  Google Scholar 

  • Szymanski M, Barciszewska MZ, Erdmann VA, Barciszewski J (2003) 5S rRNA: structure and interactions. Biochem J 371:641–651

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitive of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Van den Bussche RA, Longmire JL, Baker RJ (1995) How bats achieve a small C-value: frequency of repetitive DNA in Macrotus. Mamm Genome 6:521–525

    Article  PubMed  Google Scholar 

  • Volleth M (1987) Differences in the location of nucleolus organizer regions in European vespertilionid bats. Cytogenet Cell Genet 44:186–197

    Article  PubMed  CAS  Google Scholar 

  • Zima J (1982) Karyotypy tří druhů vrápenců (Rhinolophus ferrumequinum, Rh. hipposideros, Rh.euryale) z Ceskoslovenska. Lynx (Phaha) 21:121–124

    Google Scholar 

  • Zima J (2004) Karyotypic variation in mammals of the Balkan Peninsula. In: Griffiths HI, Kryštufek B, Reed JM (eds) Balkan biodiversity: pattern and process in the European hotspot. Kluwer Academic Publishers, Dordrecht, pp 109–133

    Google Scholar 

  • Zima J, Volleth M, Horáček I, Červený J, Červená A, Průcha K, Macholán M (1992) Comparative karyology of rhinolophid bars (Chiroptera: Rhinolophidae). In: Horáček I, Vohralík V (eds) Prague studies in mammalogy. Charles University Press, Praha, pp 229–236

    Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministerio de Educación y Ciencia through project numbers: PB98-1378-C02-02 and CGL2006-05308/BOS (project funded by the European Union (FEDER)), and by the Junta de Andalucía through the programme “Ayudas a grupos de investigación”, group number CVI 220.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Sánchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puerma, E., Acosta, M.J., Barragán, M.J.L. et al. The karyotype and 5S rRNA genes from Spanish individuals of the bat species Rhinolophus hipposideros (Rhinolophidae; Chiroptera). Genetica 134, 287–295 (2008). https://doi.org/10.1007/s10709-007-9236-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-007-9236-4

Keywords

Navigation