Advertisement

Genetica

, Volume 134, Issue 3, pp 287–295 | Cite as

The karyotype and 5S rRNA genes from Spanish individuals of the bat species Rhinolophus hipposideros (Rhinolophidae; Chiroptera)

  • Eva Puerma
  • Manuel J. Acosta
  • Maria José L. Barragán
  • Sergio Martínez
  • Juan Alberto Marchal
  • Mónica Bullejos
  • Antonio Sánchez
Article

Abstract

The karyotype of individuals of the species Rhinolophus hipposideros from Spain present a chromosome number of 2n = 54 (NFa = 62). The described karyotype for these specimens is very similar to another previously described in individual from Bulgaria. However, the presence of one additional pair of autosomal acrocentric chromosomes in the Bulgarian karyotype and the differences in X chromosome morphology indicated that we have described a new karyotype variant in this species. In addition, we have analyzed several clones of 1.4 and 1 kb of a PstI repeated DNA sequence from the genome of R. hipposideros. The repeated sequence included a region with high identity with the 5S rDNA genes and flanking regions, with no homology with GenBank sequences. Search for polymerase III regulatory elements demonstrated the presence of type I promoter elements (A-box, Intermediate Element and C-box) in the 5S rDNA region. In addition, upstream regulatory elements, as a D-box and Sp1 binding sequences, were present in flanking regions. All data indicated that the cloned repeated sequences are the functional rDNA genes from this species. Finally, FISH demonstrated the presence of rDNA in nine chromosome pairs, which is surprising as most mammals have only one carrier chromosome pair.

Keywords

Rhinolophus hipposideros Chiroptera Repetitive DNA Karyotype 5S rRNA gene 

Notes

Acknowledgements

This work was supported by the Spanish Ministerio de Educación y Ciencia through project numbers: PB98-1378-C02-02 and CGL2006-05308/BOS (project funded by the European Union (FEDER)), and by the Junta de Andalucía through the programme “Ayudas a grupos de investigación”, group number CVI 220.

References

  1. Altschul A, Stephen F, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller A, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. Baker RJ, Maltbie M, Owen JG, Hamilton MJ, Bradley RD (1992) Reduced number of ribosomal sites in bats: evidence for a mechanism to contain genome size. J Mammal 73:847–858CrossRefGoogle Scholar
  3. Barragán MJ, Martínez S, Marchal JA, Fernández R, Bullejos M, Díaz de la Guardia R, Sánchez A (2003) Pericentric satellite DNA sequences in Pipistrellus pipistrellus (Vespertilionidae; Chiroptera). Heredity 91:232–238PubMedCrossRefGoogle Scholar
  4. Belcheva RG, Topashka-Ancheva MN, Bisserov V (1990) Karyological studies of Rhinolophus ferrumequinum and Rhinolophus hipposideros (Rhinolophidae, Chiroptera) from Bulgaria. Compt Rend Acad Bulg Sci 43:81–83Google Scholar
  5. Borodulina OR, Kramerov DA (2005) PCR-based approach to SINE isolation: simple and complex SINEs. Gene 349:197–205PubMedCrossRefGoogle Scholar
  6. Bovey R (1949) Les chromosomes des Chiroptéres et des Insectivores. Rev Suisse Zool 56:371–460Google Scholar
  7. Capanna E, Manfredi Romanini MG (1971) Nuclear DNA content and morphology of the karyotype in certain palearctic Microchiroptera. Caryologia 24:471–482Google Scholar
  8. Capanna E, Civitelli MV, Conti L (1967) I cromosomi somatici del pipistrello Ferro di cavallo minore’ (Mammalia-Chiroptera). Rend Acc Naz Lincei 42:125–128Google Scholar
  9. Christensen K, Lomholt B, Hallenberg C, Nielsen KV (1998) Mink 5S rRNA genes map to 2q in three loci suggesting conservation of synteny with human 1q. Hereditas 128:17–20PubMedCrossRefGoogle Scholar
  10. Drouin G, Moniz de Sá M (1995) The concerted evolution of 5S ribosomal genes linked to the repeat units of other multigene families. Mol Biol Evol 12:481–493PubMedGoogle Scholar
  11. Eirín-López JM, Fernanda Ruiz M, González-Tizón AM, Martínez A, Sánchez L, Méndez J (2004) Molecular evolutionary characterization of the mussel Mytilus histone multigene family: first record of a tandemly repeated unit of five histone genes containing an H1 subtype with “orphon” features. J Mol Evol 58:131–144PubMedCrossRefGoogle Scholar
  12. Fattajev MD (1978) Sravnitelnaja Kariologija někotorych rukokrylykh Azerbaidžana. PhD Thesis, Institute of Zoology, BakuGoogle Scholar
  13. Frederiksen S, Andersen JH (2003) The external promoter in the guinea pig 5S rRNA gene is different from the rodent promoter. Hereditas 139:156–160PubMedCrossRefGoogle Scholar
  14. Frederiksen S, Cao H, Lomholt B, Levan G, Hallenberg C (1997) The rat 5S rRNA bona fide gene repeat maps to chromosome 19q12→qter and the pseudogene repeat maps to 12q12. Cytogenet Cell Genet 76:101–106PubMedCrossRefGoogle Scholar
  15. Hallenberg C, Frederiksen S (2001) Effect of mutations in the upstream promoter on the transcription of human 5S rRNA genes. Biochim Biophys Acta 1520:169–173PubMedGoogle Scholar
  16. Hallenberg C, Nederby Nielsen J, Frederiksen S (1994) Characterization of 5S rRNA genes from mouse. Gene 142:291–295PubMedCrossRefGoogle Scholar
  17. Hart RP, Folk WR (1982) Structure and organization of a mammalian 5 S gene cluster. J Biol Chem 257:11706–11711PubMedGoogle Scholar
  18. Hsu TC, Spirito SE, Pardue ML (1975) Distribution of 18 + 28S ribosomal genes in mammalian genomes. Chromosoma 53:25–36PubMedCrossRefGoogle Scholar
  19. Jensen LR, Frederiksen S (2000) The 5S rRNA genes in Macaca fascicularis are organized in two large tandem repeats. Biochim Biophys Acta 1492:537–542PubMedGoogle Scholar
  20. Kriegs JO, Churakov G, Kiefmann M, Jordan U, Brosius J, Schmitz J (2006) Retroposed elements as archives for the evolutionary history of placental mammals. PLoS Biol 4:e91PubMedCrossRefGoogle Scholar
  21. Leah R, Frederiksen S, Engberg J, Sorensen PD (1990) Nucleotide sequence of a mouse 5S rRNA variant gene. Nucleic Acids Res 18:7441PubMedCrossRefGoogle Scholar
  22. Leite-Silva C, Santos N, Fagundes V, Yonenaga-Yassuda Y, De Souza MJ (2003) Karyotypic characterization of the bat species Molossus ater, M. molossus and Molossops planirostris (Chiroptera, Molossidae) using FISH and banding techniques. Hereditas 138:94–100PubMedCrossRefGoogle Scholar
  23. Lo Y-MD, Mehal WZ, Fleming KA (1990) Incorporation of biotinylated dUTP. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 113–118Google Scholar
  24. Lomholt B, Christensen K, Hallenberg C, Frederiksen S (1995a) Porcine 5S rRNA genes map to 14q23 revealing syntenic relation to human HSPA-6 and -7. Mamm Genome 6:439–441PubMedCrossRefGoogle Scholar
  25. Lomholt B, Frederiksen S, Nielsen JN, Hallenberg C (1995b) Additional assignment of the human 5S rRNA genes to chromosome region 1q31. Cytogenet Cell Genet 70:76–79PubMedCrossRefGoogle Scholar
  26. Lomholt B, Frederiksen S, Jensen LR, Christensen K, Hallenberg C (1996) 5S rRNA genes in Macaca fascicularis map to chromosome 1p in three loci. Mamm Genome 7:451–453PubMedCrossRefGoogle Scholar
  27. Lomholt B, Christensen K, Frederiksen S (2002) Guinea pig (Cavio cambayo) 5S rRNA genes map to 7q2, 20q2 and 30q2 shown by an R-banded karyotype with PNA-FISH. Hereditas 136:104–107PubMedCrossRefGoogle Scholar
  28. Long EO, Dawid IB (1980) Repeated genes in eukaryotes. Annu Rev Biochem 49:727–764PubMedCrossRefGoogle Scholar
  29. Marchal JA, Martínez S, Acosta MJ, Bullejos M, Díaz de la Guardia R, Sánchez A (2004) Characterization of an EcoRI family of satellite DNA from two species of the genus Eptesicus (Vespertilionidae; Chiroptera). Genetica 122:303–310PubMedCrossRefGoogle Scholar
  30. Martins C, Wasko AP, Oliveira C, Porto-Foresti F, Parise-Maltempi PP, Wright JM, Foresti F (2002) Dynamics of 5S rDNA in the tilapia (Oreochromis niloticus) genome: repeat units, inverted sequences, pseudogenes and chromosome loci. Cytogenet Genome Res 98:78–85PubMedCrossRefGoogle Scholar
  31. Matsubara K, Nishida-Umehara C, Tsuchiya K, Nukaya D, Matsuda Y (2004) Karyotypic evolution of Apodemus (Muridae, Rodentia) inferred from comparative FISH analyses. Chromosome Res 12:383–395PubMedCrossRefGoogle Scholar
  32. Matsuda Y, Moriwaki K, Chapman VM, Hoi-Sen Y, Akbarzadeh J, Suzuki H (1994) Chromosomal mapping of mouse 5S rRNA genes by direct R-banding fluorescence in situ hybridization. Cytogenet Cell Genet 66:246–249PubMedCrossRefGoogle Scholar
  33. Nielsen JN, Hallenberg C, Frederiksen S, Sorensen PD, Lomholt B (1993) Transcription of human 5S rRNA genes is influenced by an upstream DNA sequence. Nucleic Acids Res 21:3631–3636PubMedCrossRefGoogle Scholar
  34. Paule MR, White RJ (2000) Survey and summary: transcription by RNA polymerases I and III. Nucleic Acids Res 28:1283–1298PubMedCrossRefGoogle Scholar
  35. Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA 83:2934–2938PubMedCrossRefGoogle Scholar
  36. Qumsiyeh MB, Schlitter DA, Disi AM (1986) New records and karyotypes of small mammals from Jordan. Z Säugetierkunde 51:139–146Google Scholar
  37. Qumsiyeh MB, Owen RD, Chesser RK (1988) Differential rates of genic and chromosomal evolution in bats of the family Rhinolophidae. Genome 30:326–335PubMedGoogle Scholar
  38. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  39. Santos N, Fagundes V, Yonenaga-Yassuda Y, De Souza MJ (2001) Comparative karyology of Brazilian vampire bats Desmodus rotundus and Diphylla ecaudata (Phyllostomidae, Chiroptera): banding patterns, base-specific fluorochromes and FISH of ribosomal genes. Hereditas 134:189–194PubMedCrossRefGoogle Scholar
  40. Santos N, Fagundes V, Yonenaga-Yassuda Y, De Souza MJ (2002) Localization of rRNA genes in Phyllostomidae bats reveals silent NORs in Artibeus cinereus. Hereditas 136:137–143PubMedCrossRefGoogle Scholar
  41. Sorensen PD, Frederiksen S (1991) Characterization of human 5S rRNA genes. Nucleic Acids Res 19:4147–4151PubMedCrossRefGoogle Scholar
  42. Sorensen PD, Simonsen H, Frederiksen S (1990) Nucleotide sequence of a human 5S rRNA gene. Nucleic Acids Res 18:3060PubMedCrossRefGoogle Scholar
  43. Suzuki H, Moriwaki K, Sakurai S (1994) Sequences and evolutionary analysis of mouse 5S rDNAs. Mol Biol Evol 11:704–710PubMedGoogle Scholar
  44. Szymanski M, Barciszewska MZ, Erdmann VA, Barciszewski J (2003) 5S rRNA: structure and interactions. Biochem J 371:641–651PubMedCrossRefGoogle Scholar
  45. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitive of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  46. Van den Bussche RA, Longmire JL, Baker RJ (1995) How bats achieve a small C-value: frequency of repetitive DNA in Macrotus. Mamm Genome 6:521–525PubMedCrossRefGoogle Scholar
  47. Volleth M (1987) Differences in the location of nucleolus organizer regions in European vespertilionid bats. Cytogenet Cell Genet 44:186–197PubMedCrossRefGoogle Scholar
  48. Zima J (1982) Karyotypy tří druhů vrápenců (Rhinolophus ferrumequinum, Rh. hipposideros, Rh.euryale) z Ceskoslovenska. Lynx (Phaha) 21:121–124Google Scholar
  49. Zima J (2004) Karyotypic variation in mammals of the Balkan Peninsula. In: Griffiths HI, Kryštufek B, Reed JM (eds) Balkan biodiversity: pattern and process in the European hotspot. Kluwer Academic Publishers, Dordrecht, pp 109–133Google Scholar
  50. Zima J, Volleth M, Horáček I, Červený J, Červená A, Průcha K, Macholán M (1992) Comparative karyology of rhinolophid bars (Chiroptera: Rhinolophidae). In: Horáček I, Vohralík V (eds) Prague studies in mammalogy. Charles University Press, Praha, pp 229–236Google Scholar
  51. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Eva Puerma
    • 1
  • Manuel J. Acosta
    • 1
  • Maria José L. Barragán
    • 1
  • Sergio Martínez
    • 1
  • Juan Alberto Marchal
    • 1
  • Mónica Bullejos
    • 1
  • Antonio Sánchez
    • 1
  1. 1.Departamento de Biología Experimental, Facultad de Ciencias Experimentales y de la SaludUniversidad de JaénJaenSpain

Personalised recommendations