Skip to main content
Log in

Monitoring of the genetic structure of natural populations: change of the effective population size and inversion polymorphism in Drosophila subobscura

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

We analyzed changes in the genetic structure and effective population size of two ecologically distinct populations of Drosophila subobscura over several years. Population sizes of D. subobscura in beech and oak wood habitats for a period of 6 years were estimated by the capture-mark-release-recapture method. Inversion polymorphism parameters were also assessed in the same populations for a period of 3 years.

Significant differences in the numbers of individuals were observed between sexes. This affected the effective population sizes between particular years. The ratio of the effective size over the cenzus dropped significantly in beech wood in 2 years.

Although overall heterozygosity remained unchanged during the years in both habitats, frequencies of gene arrangements on five chromosomes show variability. After the bottleneck, some complex chromosomal arrangements appeared for the first time in both populations. Standard gene arrangements of chromosome A increased in frequency over the years in each habitat, while the complex arrangements remain rather stable and specific for each population.

The results obtained indicate that the population structure may significantly change if the effective size of D. subobscura population is reduced, which is mostly related to microclimatic changes in habitats. Based on the results to date, monitoring of microevolutionary changes by using D. subobscura and its relatives seems a promising way to study the effects of global climate changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andjelković M, Savković V, Kalajdžić P (2003) Inversion polymorphism in Drosophila subsobscura from two different habitats from the mountain of Goč. Hereditas 138:241–243

    Article  PubMed  Google Scholar 

  • Balanya J, Sole E, Oller JM, Sperlich Dand Serra L (2004) Long-term changes in the chromosomal inversion polymorphism of Drosophila subobscura. II. European populations. J Zool Syst Evol Res 42:191–201

    Article  Google Scholar 

  • Balanya J, Oller JM, Huey RB, Gilchirst GW, Serra L (2006) Global genetic change tracks global climate warming in Drosophila subobscura. Science 313:1773–1775

    Article  CAS  PubMed  Google Scholar 

  • Begon M (1976) Dispersal, density and microdistribution in Drosophila subobscura Collin. J Anim Ecol 45:441–456

    Article  Google Scholar 

  • Begon M (1977) The effective size of a natural Drosophila subobscura population. Heredity 38:13–18

    CAS  PubMed  Google Scholar 

  • Begon M, Krimbas CB, Loukas M (1980) The genetics of Drosophila subobscura populations. XV. Effective size of natural population estimated by three independent methods. Heredity 45:335–350

    Google Scholar 

  • Bijlsma R, Bundgaard J, Boerema AC (2000) Does inbreeding affect the extinction risk of small populations?: predictions from Drosophila. J Evol Biol 13:502–514

    Article  Google Scholar 

  • Boulding EG, Hay T (2001) Genetic and demographic parameters determining population persistence after a discrete change in the environment. Heredity 86:313–324

    Article  CAS  PubMed  Google Scholar 

  • Briscoe DA, Malpica JM, Robertson A, Smith G, Frankham R, Banks RG, Barker JSF (1992) Rapid loss of genetic variation in large captive populations of Drosophila flies: implications for the genetic management of captive populations. Conserv Biol 6:416–425

    Article  Google Scholar 

  • Briton J, Nurthen RK, Briscoe DA, Frankham R (1994) Modeling problems in conservation genetics using captive Drosophila populations: consequences of harems. Biol Conserv 69:267–275

    Article  Google Scholar 

  • Brncic D, Prevosti A, Mudnik M, Monclus M, Ocana J (1981) Colonization of Drosophila subobscura in Chile. I. First population and cytogenetic studies. Genetica 56:3–9

    Article  Google Scholar 

  • Caballero A (1994) Developments in the prediction of effective population size. Heredity 73:657–679

    Article  PubMed  Google Scholar 

  • Clarke A (2003) Costs and consequnces of evolutionary temperature adaptation. Trends Ecol Evol 18:573–581

    Article  Google Scholar 

  • Dobzhansky Th (1951) Genetics and the origin of species, 3rd edn. Columbia University Press, New York

    Google Scholar 

  • Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508

    Article  Google Scholar 

  • Frankham R (1999a) Resolving conceptual issues in conservation genetics: the roles of laboratory species and meta-analyses. Hereditas 130:195–201

    Article  Google Scholar 

  • Frankham R (1999b) Quantitative genetics in conservation biology. Genet Res Cambridge 74:237–244

    CAS  Google Scholar 

  • Frankham R (2005) Stress and adaptation in conservation genetics. J Evol Biol 18:750–755

    Article  CAS  PubMed  Google Scholar 

  • Krimbas CB (1993) Drosophila subobscura biology, genetics and inversion polymorphism. Verlag-Kovac, Hamburg

    Google Scholar 

  • Kunze-Muhl E, Muller E (1958) Weitere untersuchungen uber die chromosomale, Struktur und die naturlichen strukturtypen von Drosophila subobscura. Chromosoma (Berl.) 9:559–570

    Article  CAS  Google Scholar 

  • Kunze-Muhl E, Sperlich D (1955) Inversionen und chromosomale Strukturtypen bei Drosophila subobscura. Z. indubt. Abstamm.-u. Vererb. Lehre 87:65–84

    CAS  Google Scholar 

  • Loukas M, Krimbas CB (1979) The genetics of Drosophila subobscura populations. X. A study of dispersal. Genetica 50:127–134

    Article  Google Scholar 

  • Mace GM, Lande R (1991) Assessing extinction threats: toward a reevaluation of IUCN threatened species categories. Conserv Biol 5:148–157

    Article  Google Scholar 

  • Menozzi P, Krimbas CB (1992) The inversion polymorphism of D. subobscura revisited: synthetic maps of gene arrangement frequencies and their interpretation. J Evol Biol 5:625–641

    Article  Google Scholar 

  • Miller PS, Hedrick PW (2001) Purging of inbreeding depression and fitness decline in bottlenecked populations of Drosophila melanogaster. J Evol Biol 14:595–601

    Article  Google Scholar 

  • Nomura T (2002) Effective size of populations with unequal sex ratio and variation in mating success. J Anim Breed Genet 119:297–310

    Article  Google Scholar 

  • Nunney L (1999) The effective size of a hierarchically structured population. Evolution 53:1–10

    Article  Google Scholar 

  • Orengo DJ, Prevosti A (1996) Temporal changes in chromosomal polymorphism of Drosophila subobscura related to climatic changes. Evolution 50:1346–1350

    Article  Google Scholar 

  • Pascual M, Mestres F, Serra L (2004) Sex-ratio in natural and experimental populations of Drosophila subobscura from North America. J Zool Syst Evol Res 42:33–37

    Article  Google Scholar 

  • Rodriguez-Trelles F, Rodrigues MA, Scheiner SM (1998) Tracking the genetic effects of global warming: Drosophila and other model systems. Conserv Ecol 2 [online]. Available from the URL: http://www.consecol.org/vol2/iss2/art2

  • Savkovic V, Stamenkovic-Radak M, Andjelkovic M (2004) Diurnal variability of gene arrangement frequencies in Drosophila subobscura populations from two habitats. J Zool Syst Evol Res 42:208–214

    Article  Google Scholar 

  • Serra L, Pegueroles G, Mestres F (1987) Capacity of dispersal of a colonizing species: D. subobscura. Genetica 73:223–235

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1980) Biometry. W. H. Freeman and Company, New York

    Google Scholar 

  • Sole E, Balanya J, Sperlich D, Serra L (2002) Long-term changes in the chromosomal inversion polymorphism of Drosophila subobscura. I. Mediterranean populations from Southwestern Europe. Evolution 56:830–835

    PubMed  Google Scholar 

  • Sperlich D, Feuerbach H (1966) Is the chromosomal structure polymorphism of Drosophila subobscura stable or flexible? Zeitschrift für Vererbungslehre 98:16–24

    CAS  PubMed  Google Scholar 

  • Woodworth LM, Montgomery ME, Nurthen RK, Briscoe DA, Frankham R (1994) Modelling problems in conservation genetics using Drosophila: consequences of fluctuating population sizes. Mol Ecol 4:393–399

    Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    CAS  PubMed  Google Scholar 

  • Zar HJ (1999) Biostatistical analysis. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  • Zivanovic G, Milanovic M, Andjelkovic M (1995) Chromosomal inversion polymorphism of Drosophila subobscura populations from Jastrebac mountain shows temporal and habitat-related changes. J Zool Syst Evol Res 33:81–83

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Environmental Protection of the Republic of Serbia, Grant No. 143014. We are grateful to The Education Center of Faculty of Forestry at mountain Goc for providing help and facilities for field research. The authors thank the unanimous referees for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Stamenkovic-Radak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stamenkovic-Radak, M., Rasic, G., Savic, T. et al. Monitoring of the genetic structure of natural populations: change of the effective population size and inversion polymorphism in Drosophila subobscura . Genetica 133, 57–63 (2008). https://doi.org/10.1007/s10709-007-9183-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-007-9183-0

Keywords

Navigation