Skip to main content
Log in

Population genetic structure of three tree species in the mangrove genus Ceriops (Rhizophoraceae) from the Indo West Pacific

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Ceriops is a viviparous mangrove with widespread species Ceriops decandra and C. tagal, and an endemic species C. australis. Genetic diversity of the three species was screened in 30 populations collected from 23 locations in the Indo West Pacific (IWP) using Inter-simple sequence repeats (ISSR) and sequences of partial nuclear gene (G3pdh) and chloroplast DNA (trnV-trnM). At the species level, the total gene diversity (Ht) revealed by ISSRs was 0.270, 0.118, and 0.089 in C. decandra, C. tagal, and C. australis, respectively. A total of six haplotypes of G3pdh and five haplotypes of trnV-trnM were recognized among the three species. Only C. decandra was detected containing more than one haplotype from each sequence data set (four G3pdh haplotypes and three trnV-trnM haplotypes). At the population level, genetic diversity of Ceriops was relatively low inferred from ISSRs (He = 0.028, 0.023, and 0.053 in C. decandra, C. tagal, and C. australis, respectively). No haplotype diversity within population was detected from any of the three species. Cluster analysis based on ISSRs identified three major geographical groups in correspond to the East Indian Ocean (EIO), South China Sea (SCS), and North Australia (NA) in both C. decandra and C. tagal. The cladogram from DNA sequences also detected the same three geographical groups in C. decandra. Analysis of molecular variance (AMOVA) revealed that most of the total variation was accounted for by differentiation between the three major geographical regions of both C. decandra and C. tagal. The significant genetic structure may result from the geological events in these regions during the recent Pleistocene glaciations. This study also provided insights into the phylogenetics of Ceriops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ballment ER, Smith TJ, Stoddart JA (1988) Sibling species in the mangrove genus Ceriops (Rhizophoraceae), detected using biochemical genetics. Aust Syst Bot 1:391–397

    Article  Google Scholar 

  • Benzie JAH (1998) Genetic structure of marine organisms and SE Asian biogeography. In: Hall R, Holloway JD (eds) Biogeography and geological evolution of SE. Asia. Backhuys Publishers, The Netherlands, pp 197–209

    Google Scholar 

  • Black WC IV (1995) FORTRAN programs for the analysis of RAPD-PCR markers in populations. Colorado State University, Ft. Collins, CO 80523

  • Chiang TY, Chiang YC, Chen YJ, Chou CH, Havanond S, Hong TN, Huang S (2001) Phylogeography of Kandelia candel in East Asiatic mangroves based on nucleotide variation of chloroplast and mitochondrial DNAs. Mol Ecol 10:2697–2710

    Article  PubMed  CAS  Google Scholar 

  • Clarke PJ, Kerrigan RA, Westphal CJ (2001) Dispersal potential and early growth in 14 tropical mangroves: do early life history traits correlate with patterns of adult distribution? J Ecol 89:648–659

    Article  Google Scholar 

  • DNASTAR (1994) Lasergene. DNASTAR Inc., Madison, Wis

    Google Scholar 

  • Dodd RS, Afzal-Rafii Z, Kashani N, Budrick J (2002) Land barriers and open oceans: effects on gene diversity and population structure in Avicennia germinans L. (Avicenniaceae). Mol Ecol 11:1327–1338

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Duke NC (1992) Mangrove floristics and biogeography. In: Robertson AI, Alongi DM (eds) Tropical mangrove ecosystems. American Geophysical Union, Washington, DC, pp 63–100

    Google Scholar 

  • Excoffier L (1993) Analysis of molecular variance. Version 1.55. Genetics and Biometry Laboratory, University of Geneva

  • Felsenstein J (1985) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  Google Scholar 

  • Felsenstein J (1993) Phylogeny inference package (PHYLIP), Version 3.5. University of Washington, Seattle

    Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  • Ge XJ (2001) Reproductive biology and conservation genetics of mangroves in south China and Hong Kong. Dissertation, University of Hong Kong

  • Ge XJ, Sun M (1999) Reproductive biology and genetic diversity of a cryptoviviparous mangrove Aegiceras corniculatum (Myrsinaceae) using allozyme and inter-simple sequence repeat (ISSR) analysis. Mol Ecol 8:2061–2069

    Article  PubMed  Google Scholar 

  • Ge XJ, Sun M (2001) Population genetic structure of Ceriops tagal (Rhizophoraceae) in Thailand and China. Wetlands Ecol Manage 9:203–209

    Article  CAS  Google Scholar 

  • Gupta M, Chyi YS, Romero-Severson J, Owen JL (1994) Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theor Appl Genet 89:998–1006

    Article  CAS  Google Scholar 

  • Hamrick JL, Godt MJW (1996) Conservation genetics of endemic plant species. In: Avise JC, Hamrick JL (eds) Conservation genetics. Chapman & Hall, New York, pp 281–304

    Google Scholar 

  • Hamrick JL, Godt MJW, Murawski DA, Loveless MD (1991) Correlations between species and allozyme diversity: implications for conservation biology. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York, pp 75–86

    Google Scholar 

  • Hwang LH, Hwang SY, Lin TP (2000) Low chloroplast DNA variation and population differentiation of Chamaecypaeis formosensis and Chamaecyparis taiwanensis. Taiwan J For Sci 15:229–236

    CAS  Google Scholar 

  • Huang SF, Hwang SH, Lin T (2002) Spatial pattern of chloroplast DNA variation of Cyclobalanopsis glauca in Taiwan and East Asia. Mol Ecol 11:2349–2358

    Article  PubMed  CAS  Google Scholar 

  • Jian SG, Tang T, Zhong Y, Shi SH (2004)Variation in inter-simple sequence repeat (ISSR) in mangrove and non-mangrove populations of Heritiera littoralis (Sterculiaceae) from China and Australia. Aquat Bot 79:75–86

    Article  Google Scholar 

  • Klekowski EJJ, Lowenfeld R, Hepler PK (1994) Mangrove genetics. II. Outcrossing and lower spontaneous mutation rates in Puerto Rican Rhizophora. Int J Plant Sci 155:373–381

    Article  Google Scholar 

  • Liao PC, Havanond S, Huang S (2006) Phylogeography of Ceriops tagal (Rhizophoraceae) in Southeast Asia: the land barrier of the Malay Peninsula has caused population differentiation between the Indian Ocean and South China Sea. Conserv Genet 8:89–98

    Article  CAS  Google Scholar 

  • Lowenfeld R, Klekowski EJJ (1992) Mangrove genetics. I. Mating system and mutation rates of Rhizophora mangle in Florida and San Salvador Island. Int J Plant Sci 153:394–399

    Article  Google Scholar 

  • Maguire TL, Saenger P, Baverstock P, Henry R (2000) Microsatellite analysis of genetic structure in the mangrove species Avicennia marina (Forsk.) Vierh. (Aveicenniaceae). Mol Ecol 9:1853–1862

    Article  PubMed  CAS  Google Scholar 

  • McGuinness KA (1997) Dispersal, establishment and survival of Ceriops tagal propagules in a north Australian mangrove forest. Oecologia (Berlin) 109:80–87

    Article  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  CAS  Google Scholar 

  • Nice CC, Anthony N, Gelembiuk G et al (2005) The history and geography of diversification within the butterfly genus Lycaeides in North America. Mol Ecol 14:1741–1754

    Article  PubMed  Google Scholar 

  • Olsen KM (2002) Population history of Manihot esculenta (Euphorbiaceae) inferred from nuclear DNA sequences. Mol Ecol 11:901–911

    Article  PubMed  CAS  Google Scholar 

  • Olsen KM, Schaal BA (1999) Evidence on the origin of cassava: phylogeography of Manihot esculenta. Proc Natl Acad Sci USA 96:5586–5591

    Article  PubMed  CAS  Google Scholar 

  • Rohlf FJ (1998) NTSYS-pc, numerical taxonomy and multivari- ate analysis system, Version 2.02a. Exeter Software. Setauket, New York

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Schoen DJ (1982) The breeding system of Gilia achilleifolia: variation in floral characteristics and outcrossing rate. Evolution 36:596–613

    Article  Google Scholar 

  • Shi S, Zhong Y, Huang Y, Du Y, Qiu X, Chang H (2002) Phylogenetic relationships of the Rhizophoraceae in China based on sequences of the chloroplast gene matK and the internal transcribed spacer regions if nuclear ribosomal DNA and combined data set. Biochem Syst Ecol 30:309–319

    Article  CAS  Google Scholar 

  • Strand AE, Leebens-Mack J, Milligan BG (1997) Nuclear DNA-based markers for plant evolutionary biology. Mol Ecol 6:113–118

    Article  PubMed  CAS  Google Scholar 

  • Sun M, Wong KC, Lee JSY (1998) Reproductive biology and population genetic structure of Kandelia candel (Rhizophoraceae), a viviparous mangrove species. Am J Bot 85:1631–1637

    Article  Google Scholar 

  • Swofford DL (1998) PAUP*. Phylogenetic analysis using parsimony and other methods, Version 4. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  PubMed  CAS  Google Scholar 

  • Takayama K, Kajita T, Murata J, Tateishi Y (2006) Phylogeography and genetic structure of Hibiscus tiliaceus—speciation of a pantropical plant with sea-drifted seeds. Mol Ecol 15:2871–2881

    Article  PubMed  CAS  Google Scholar 

  • Tan F, Huang Y, Ge X, Su G, Ni X, Shi S (2005) Population genetic structure and conservation implications of Ceriops decandra in Malay Peninsula and North Australia. Aquat Bot 81:175–188

    Article  Google Scholar 

  • Tang T, Zhong Y, Jian S, Shi S (2003) Genetic diversity of Hibiscus tiliaceus (Malvaceae) in China assessed suing AFLP markers. Ann Bot 92:409–414

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson PB (1986) The botany of mangroves. Cambridge University Press, Cambridge, pp 374–381

    Google Scholar 

  • Voris HK (2000) Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems, and time durations. J Biogeogr 27:1153–1167

    Article  Google Scholar 

  • White CT (1926) A variety of Ceriops tagal C. B. Rob. (C. candolleana W. & A.). J Bot 64:220–221

    Google Scholar 

  • Yeh FC, Yang RC, Boyle TBJ, Ye ZH, Mao JX (1997) POPGENE, the user-friendly shareware for population genetic analysis. Mol. Biol. Biotech. Center, University of Alberta, Canada

    Google Scholar 

  • Zhong Y, Shi S, Tang X, Huang Y, Tan F, Zhang X (2000) Testing relative evolutionary rates and estimating divergence time among six genera of Rhizophoraceae using cpDNA and nrDNA sequences. Chin Sci Bull 45:1011–1015

    Article  CAS  Google Scholar 

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Norman Duke, Dr. Xuejun Ge, Dr. Sonjai Havanond, and Dr. Peichun Liao for their assistance in collecting or providing some plant materials, and Mr. Miles Tracy for reading the manuscript. We also appreciate the helpful comments on this manuscript from three anonymous referees. This study was supported by grants from the National Natural Science Foundation of China (30300033, 30500049, 30230030, 30470119, U0633002), the Natural Science Foundation of Guangdong Province (500316), the Ministry of Education Special Foundation (20010558013), the Chang Hungta Science Foundation of Sun Yat-Sen University, the Qiu Shi Science and Technology Foundation and the National Key Project for Basic Research (973) grant 2003CB715904.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhua Shi.

Additional information

Yelin Huang and Fengxiao Tan contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Tan, F., Su, G. et al. Population genetic structure of three tree species in the mangrove genus Ceriops (Rhizophoraceae) from the Indo West Pacific. Genetica 133, 47–56 (2008). https://doi.org/10.1007/s10709-007-9182-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-007-9182-1

Keywords

Navigation