, Volume 132, Issue 1, pp 95–101 | Cite as

Comparative analysis of rDNA location in five Neotropical gomphocerine grasshopper species

  • Vilma Loreto
  • Josefa Cabrero
  • Maria Dolores López-León
  • Juan Pedro M. Camacho
  • Maria José de Souza


We report here, for the first time, the chromosome complement, number and location of the nucleolar organizer regions (NORs) revealed by silver staining (AgNO3) and fluorescent in situ hybridization (FISH) in five Neotropical gomphocerine species: Rhammatocerus brasiliensis, R. brunneri, R. palustris, R. pictus and Amblytropidia sp. The objective of this study was to summarize available data and propose a model of chromosome evolution in Neotropical gomphocerines. All five species studied showed chromosome numbers consisting of 2n = 23,X0 in males and 2n = 24,XX in females. Amblytropidia sp. was the only species showing a bivalent (M8) with megameric behavior during meiosis. The rDNA sites were restricted to autosomal pairs, i.e. the pericentromeric region of the S9 chromosome, the consensus NOR location in all five species. R. brasiliensis was the only species showing additional NORs on M4 and M6 pairs which, likewise the S9 NOR, were active in all cells analyzed. Comparison of these results with those reported previously in Palearctic gomphocerine species suggests higher resemblance of Neotropical species with the Old World species also possessing 23/24 chromosomes. Evolutionary mechanisms responsible for the observed interspecific variation in NOR location in this group are discussed.


Amblytropidia Chromosome FISH NOR Rhammatocerus 



We are grateful to Dr. Carlos S. Carbonell, Universidade de Montevideo, Uruguay, for the taxonomic identification of the species and for providing the Rhammatocerus pictus specimens. The authors also grateful to Dr. Aline Alexandrino for the revision of the manuscript. This study was supported by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior)-Doctoral Sandwich Program, and FACEPE (Fundação de Amparo à Ciência do Estado de Pernambuco). J. Cabrero, M.D. López-León and J.P.M. Camacho are indebted to Ministerio de Ciencia y Tecnología (BOS2003–06635) and Plan Andaluz de Investigación, Group No. CVI-165, Spain.


  1. Assis-Pujol CV (1997a) Notas sinonímias e redescrições de duas espécies de Rhammatocerus Saussure, 1861 (Orthoptera, Acrididae, Gomphocerinae, Scyllinini). Bol Mus Nac Rio de Janeiro 376:1–12Google Scholar
  2. Assis-Pujol CV (1997b) Duas novas espécies brasileiras de Rhammatocerus Saussure, 1861 (Acrididae, Gomphocerinae, Scyllinini). Bol Mus Nac Rio de Janeiro 380:1–10Google Scholar
  3. Assis-Pujol CV (1998) Aspectos morfológicos, taxonômicos e distribuição geográfica de cinco espécies de Rhammatocerus Saussure, 1861 (Acrididae, Gomphocerinae, Scyllinini). Bol Mus Nac Rio de Janeiro 387:1–27Google Scholar
  4. Bidau CJ (1984) Meiotic pairing and chiasma localization in Scyllina signatipennis (Gomphocerinae, Acrididae). Caryologia 37:87–103Google Scholar
  5. Bugrov AG (1996) Karyotypes of the short-horned orthopteran insects (Orthoptera, Caelifera) from Russia, Kazakhstan, Central Asia and the Caucasus. Folia Biol 44:15–25Google Scholar
  6. Bugrov A., Novikova O, Mayorov V, Adkison L, Blinov A (2006) Molecular phylogeny of Palearctic genera of Gomphocerinae grasshoppers (Orthoptera, Acrididae). Syst Entomol 31:362–368CrossRefGoogle Scholar
  7. Bridle JR, de la Torre J, Bella JL, Butlin RK, Gosálvez J (2002) Low levels of chromosomal differentiation between the grasshoppers Chorthippus brunneus and Chorthippus jacobsi (Orthoptera; Acrididae) in northern Spain. Genetica 114:121–127PubMedCrossRefGoogle Scholar
  8. Cabrero J., Camacho JPM (1986) Cytogenetic studies in gomphocerine grasshoppers. II. Chromosomal location of active nucleolar organizing regions. Can J Genet Cytol 28:540–544Google Scholar
  9. Cabrero J., López-León MD, Camacho JPM (1998) Ribossomal DNA in a supernumerary chromosome segment of the grasshopper Oedipoda fuscocincta confirms its origin by translocation. Hereditas 129:15–18CrossRefGoogle Scholar
  10. Cabrero J., Bugrov A, Warchalowska -Sliwa E, López-León MD, Perfectti F, Camacho JPM (2003) Comparative FISH analysis in five species of Eyprepocnemidine grasshoppers. Heredity 90:377–381PubMedCrossRefGoogle Scholar
  11. Carbonell CS (1977) Origin, evolution and distribution of the Neotropical Acridomorph fauna (Orthoptera): a preliminary hypothesis. Rev Soc Ent Argentina 36:153–175Google Scholar
  12. Carbonell CS (1995) Revision of the tribe Scyllinini, Nov. (Acrididae: Gomphocerinae), with descriptions of new genera and species. Trans Am Entomol Soc 121:87–152Google Scholar
  13. Carlson JG (1936) The intergenic homology of an atypical euchromosome in several closely related Acridinae (Orthoptera). J Morphol 59:123–161CrossRefGoogle Scholar
  14. Colombo PC, Remis MI (1997) On the origin of B-chromosomes: neo XY systems and X-like supernumeraries in Orthoptera. Caryologia 50:151–162Google Scholar
  15. Goodpasture C, Bloom SE (1975) Visualization of nucleolar organizer regions in mammalian chromosomes using silver stained. Chromosoma 53:37–50PubMedCrossRefGoogle Scholar
  16. Hewitt GM (1979) Orthoptera: grasshoppers and crickets. Berlin: Gerbruder BorntragerGoogle Scholar
  17. Hirai H., Yamamoto M, Taylor RW, Imai HT (1996) Genomic dispersion of 28S rDNA during karyotypic evolution in the ant genus Myrmecia (Formicidae). Chromosoma 105:190–196PubMedGoogle Scholar
  18. Jago NJ (1971) A review of the Gomphocerinae of the world, with a key to the genera (Orthoptera, Acrididae). Proc Acad Nat Sci Philadelphia 123:205–343Google Scholar
  19. Lifschytz E., Lindsley DL (1972) The role of X-chromosome inactivation during spermatogenesis. Proc Natl Acad Sci USA 69:182–186PubMedCrossRefGoogle Scholar
  20. López-León MD, Neves N, Schwarzacher T, Heslop-Harrison JS, Hewitt GM, Camacho JPM (1994) Possible origin of a B chromosome deduced from its DNA composition using double FISH technique. Chromosome Res 2:87–92PubMedCrossRefGoogle Scholar
  21. López-León MD, Cabrero J, Camacho JPM (1995) Changes in NOR activity pattern in the presence of supernumerary heterochromatin in the grasshopper Eyprepocnemis plorans. Genome 38:68–79Google Scholar
  22. López-León MD, Cabrero J, Camacho JPM (1999) Unusually high amount of inactive ribossomal DNA in the grasshopper Staurodeurus scalaris. Chromosome Res 7:83–88PubMedCrossRefGoogle Scholar
  23. Mesa A, Ferreira A, Carbonell CS (1982) Cariologia de los acridoideos neotropicales: estado actual de su conocimiento y nuevas contribuciones. Annls Soc Ent Fr (N S) 18:507–526Google Scholar
  24. Miller DA, Dev VG, Tantravahi R, Miller OJ (1976) Suppression of human nucleolus organiser activity in mouse-human somatic hybrid cells. Exp Cell Res 101:235–243PubMedCrossRefGoogle Scholar
  25. Moura RC, Souza MJ, Melo NF, Lira-Neto AC (2003) Karyotypic characterization of representatives from Melolonthinae (Coleoptera; Scarabeidae): karyotypic analysis, banding and fluorescent in situ hybridization (FISH). Hereditas 138:200–206CrossRefGoogle Scholar
  26. Otte D (1979) Revision of the grasshopper tribe Orphulellini (Gomphocerinae, Acrididae). Proc Acad Nat Sci Philadelphia 131:52–88Google Scholar
  27. Otte D, Jago NJ (1979) Revision of the grasshopper genera Silvitettix and Compsacris (Gomphocerinae, Acrididae). Proc Acad Nat Sci Philadelphia 131:257–288Google Scholar
  28. Raskina O, Belyayev A, Nevo E (2004) Activity of the En/Spm-liketransposons in meiosis as a base for chromosome repatterning in a small, isolated, peripheral population of Aegilops speltoides Tausch. Chromosome Res 12:153–161PubMedCrossRefGoogle Scholar
  29. Remis MI (1989) Effects of supernumerary heterochromatin on chiasma conditions in two species of Acrididae (Orthoptera). Genetica 79:53–61CrossRefGoogle Scholar
  30. Remis MI (1993) Effects of chromosome rearrangements on sperm formation in Sinipta dalmani (Orthoptera: Acrididae). Caryologia 46:321–328Google Scholar
  31. Rufas JS, Esponda P, Gosálvez J (1985) NOR and nucleolus in the spermatogenesis of acridoid grasshoppers. Genetica 66:139–144CrossRefGoogle Scholar
  32. Santos JL, Fox DP (1988) A study of nucleolus organiser regions (NORs) in the subfamily Gomphocerinae (Acrididae: Orthoptera) by means of an acridine orange staining procedure. Genet (Life Sci Adv) 7:27–32Google Scholar
  33. Vilardi JC (1986) Isocromosomas B e irregularidades meioticas en dos especies de Euplectrotettix (Orthoptera: Acrididae). Mendeliana 7:125–137Google Scholar
  34. Zurita F, Jiménez R, Burgos M, Díaz de la Guardia R (1998) Sequential silver staining and in situ hybridization reveal a direct association between rDNA levels and the expression of homologous nucleolar organizing regions: a hypothesis for NOR structure and function. J Cell Sci 111:1433–1439PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Vilma Loreto
    • 1
    • 3
    • 4
  • Josefa Cabrero
    • 2
  • Maria Dolores López-León
    • 2
  • Juan Pedro M. Camacho
    • 2
  • Maria José de Souza
    • 1
  1. 1.Departamento de Genética, CCBUniversidade Federal de PernambucoRecifeBrasil
  2. 2.Departamento de Genética, Facultad de CienciasUniversidad de GranadaGranadaSpain
  3. 3.Unidade Acadêmica de GaranhunsUniversidade Federal Rural de PernambucoGaranhunsBrasil
  4. 4.Av. Prof. Moraes Rego, s\nCidade UniversitariaRecifeBrasil

Personalised recommendations