Advertisement

Genetica

, Volume 131, Issue 2, pp 141–149 | Cite as

Divergent location of ribosomal genes in chromosomes of fish thorny-headed worms, Pomphorhynchus laevis and Pomphorhynchus tereticollis (Acanthocephala)

  • Marta Bombarová
  • František Marec
  • Petr Nguyen
  • Marta Špakulová
Original Paper

Abstract

We studied distribution of ribosomal DNA (rDNA) sequences along with chromosomal location of the nucleolar organizer regions (NORs) in males of two fish parasites, Pomphorhynchus laevis and Pomphorhynchus tereticollis (Acanthocephala). Fluorescence in situ hybridization with 18S rDNA probe identified two clusters of rDNA in each species, but revealed a remarkable difference in their location on chromosomes. In P. laevis, the rDNA-FISH signals were found in long arms of the first chromosome pair and in short arms of the second pair. Whereas in P. tereticollis, rDNA clusters were located in long arms of both the first and second chromosome pairs. The divergent location of rDNA clusters in the chromosome No. 2 supports current classification of P. tereticollis, previously considered a synonym of P. laevis, as a separate species. A possible scenario of the second chromosome rearrangement during karyotype evolution of the two species involves two successive pericentric inversions. In both species, one or two prominent nucleoli were apparent within interphase nuclei stained with either silver nitrate or a fluorescent dye YOYO-1. However, a single large nucleolus was observed in early stages of mitosis and meiosis I regardless the number of rDNA clusters. Nevertheless, two bivalents with silver-stained NORs in diakinesis and two silver-stained sites in early prophase II nuclei indicated that all NORs are active. This means that each Pomphorhynchus NOR generates a nucleolus, but the resulting nucleoli have a strong tendency to associate in a large body.

Keywords

Acanthocephala FISH Karyotype evolution Nucleolar organizer region Pomphorhynchus rDNA Syndermata 

Notes

Acknowledgements

M.B. and M.S. are highly indebted to Tomas Scholz, Biology Centre, ASCR, Institute of Parasitology, České Budějovice, Czech Republic, for a kind providing fish hosts of P. laevis and the overall support of parasitological part of the work. This study was supported by grant No. 2/6191/6 of the Slovak Grant Agency VEGA, Bratislava, and from the MVTS programme Stefanik No. 10 of the Ministry of Education of the Slovak Republic. M.B. acknowledges a research fellowship from the Academy of Sciences of the Czech Republic—Slovak Academy of Sciences Exchange Programme. F.M. and P.N. were supported by grants A6007307 of the Grant Agency of the Academy of Sciences of the Czech Republic (until 2005) and 206/06/1860 of the Grant Agency of the Czech Republic (since 2006), both Prague, and from the Entomology Institute project Z50070508.

References

  1. Ahlrichs WH (1995) Ultrastruktur und Phylogenie von Seison nebaliae (Grube, 1859) und Seison annulatus (Claus, 1876). Hypothesen zu phylogenetischen Verwandtschaftsverhältnissen innerhalb der Bilateralia. Cuvillier, GőttingenGoogle Scholar
  2. Ahlrichs WH (1998) Spermatogenesis and ultrastructure of the spermatozoa of Seison nebaliae (Syndermata). Zoomorphology 118:255–261CrossRefGoogle Scholar
  3. Amin OM, Abdullah SMA, Mhaisen FT (2003) Description of Pomphorhynchus spindletruncatus n. sp. (Acanthocephala: Pomphorhynchidae) from freshwater fishes in northern Iraq, with the erection of a new pomphorhynchid genus, Pyriproboscis n. g., and keys to genera of the Pomphorhynchidae and the species of Pomphorhynchus Monticelli, 1905. Syst Parasitol 54:229–235PubMedCrossRefGoogle Scholar
  4. Anastassova-Kristeva M (1977) The nucleolar cycle in man. J Cell Sci 25:103–110PubMedGoogle Scholar
  5. Bertová M, Dudiňák V, Špakulová M (2003) Karyological characteristics of two geographically distant populations of fish acanthocephalan Pomphorhynchus laevis (Acanthocephala). Helminthologia 40:183Google Scholar
  6. Crompton DWT (1985) Reproduction. In: Crompton DWT, Nickol BB (eds) Biology of the Acanthocephala. Cambridge University Press, Cambridge, pp 213–271Google Scholar
  7. Dudiňák V, Šnábel V (2001) Comparative analysis of Slovak and Czech populations of Pomphorhynchus laevis (Acanthocephala) using morphological and isoenzyme analyses. Acta Zool Univ Comenianae 44:47–56Google Scholar
  8. Fontana F, Dezfuli BS, Benvenuti M (1993) Somatic and meiotic chromosomes in male and female of Pomphorhynchus laevis Műller, 1776 (Acanthocephala, Pomphorhynchidae). Caryologia 46:329–334Google Scholar
  9. Frydrychová R, Marec F (2002) Repeated losses of TTAGG telomere repeats in evolution of beetles (Coleoptera). Genetica 115:179–187PubMedCrossRefGoogle Scholar
  10. Fuková I, Nguyen P, Marec F (2005) Codling moth cytogenetics: karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. Genome 48:1083–1092PubMedCrossRefGoogle Scholar
  11. García-Varela M, Nadler SA (2005) Phylogenetic relationships of Palaeacanthocephala (Acanthocephala) inferred from SSU and LSU rDNA gene sequences. J Parasitol 91:1401–1409PubMedCrossRefGoogle Scholar
  12. Herlyn H, Piskurek O, Schmitz J, Ehlers U, Zischler H (2003) The syndermatan phylogeny and the evolution of acanthocephalan endoparasitism as inferred from 18S rDNA sequences. Mol Phyl Evol 26:155–164CrossRefGoogle Scholar
  13. Hirai H, Taguchi T, Saitoh Y, Kawanaka M, Sugiyama H, Habe S, Okamoto M, Hirata M, Shimada M, Tiu WU, Lai K, Upatham ES, Agatsuma T (2000) Chromosomal differentiation of the Schistosoma japonicum complex. Int J Parasitol 30:441–452PubMedCrossRefGoogle Scholar
  14. Kráľová-Hromadová I, Tietz SF, Shinn AP, Špakulová M (2003) ITS rDNA sequences of Pomphorhynchus laevis (Zoega in Műller, 1776) and P. lucyi William et Rogers, 1984 (Acanthocephala: Palaeacanthocephala). Syst Parasitol 56:141–145CrossRefGoogle Scholar
  15. Mark Welch DB (2001) Early contributions of molecular phylogenetics to understanding the evolution of Rotifera. Hydrobiologia 446:315–322CrossRefGoogle Scholar
  16. Mark Welch DB (2005) Bayesian and maximum likelihood analyses of rotifer-acanthocephalan relationships. Hydrobiologia 546:47–54CrossRefGoogle Scholar
  17. Mark Welch JL, Meselson M (1998) Karyotypes of bdelloid rotifers from three families. Hydrobiologia 388:403–407CrossRefGoogle Scholar
  18. Mediouni J, Fuková I, Frydrychová R, Dhouibi MH, Marec F (2004) Karyotype, sex chromatin and sex chromosome differentiation in the carob moth, Ectomyelois ceratoniae (Lepidoptera: Pyralidae). Caryologia 57:184–194Google Scholar
  19. Mellink CHM, Bosma AA, de Haan NA (1994) Variation in size of Ag-NORs and fluorescent rDNA in situ hybridization signals in six breeds of domestic pig. Hereditas 120:141–149PubMedCrossRefGoogle Scholar
  20. Mutafova T, Nedeva I (1988) Oogenesis and spermatogenesis of Pomphorhynchus laevis (Műller, 1776) (Acanthocephala: Pomphorhynchidae). Khelminthologyia 25: 23–28Google Scholar
  21. Navarro A, Barton NH (2003) Accumulating postzygotic isolation genes in parapatry: a new twist on chromosomal speciation. Evolution 57:447–459PubMedGoogle Scholar
  22. Near TJ, Garey JR, Nadler SA (1998) Phylogenetic relationship of the Acanthocephala inferred from 18S ribosomal DNA sequences. Mol Phyl Evol 10:287–298CrossRefGoogle Scholar
  23. Noor MAF, Grams KL, Bertucci LA, Reiland J (2001) Chromosomal inversions and the reproductive isolation of species. Proc Natl Acad Sci USA 98:12084–12088PubMedCrossRefGoogle Scholar
  24. Perrot-Minnot MJ (2004) Larval morphology, genetic divergence, and contrasting levels of host manipulation between forms of Pomphorhynchus laevis (Acanthocephala). Int J Parasitol 34:45–54PubMedCrossRefGoogle Scholar
  25. Ráb P, Roth P (1988) Cold-blooded vertebrates. In: Balíček P, Forejt J, Rupeš J (eds) Methods of chromosome analysis. Czech Biological Society Publishing, Brno, pp 115–124Google Scholar
  26. Rieseberg LH (2001) Chromosomal rearrangements and speciation. Trends Ecol Evol 16:351–358PubMedCrossRefGoogle Scholar
  27. Sahara K, Marec F, Traut W (1999) TTAGG telomeric repeats in chromosomes of some insects and other arthropods. Chromosome Res 7:449–460PubMedCrossRefGoogle Scholar
  28. Schwarzacher HG, Wachtler F (1993) The nucleolus. Anat Embryol 188:515–536PubMedCrossRefGoogle Scholar
  29. Sørensen MV, Giribet G (2006) A modern approach to rotiferan phylogeny: Combining morphological and molecular data. Mol Phyl Evol 40:585–608CrossRefGoogle Scholar
  30. Špakulová M, Kráľová-Hromadová I, Dudiňák V, Reddy PV (2002) Karyotype of Acanthocephalus lucii: the first record of supernumerary chromosomes in thorny-headed worms. Parasitol Res 88:778–780PubMedGoogle Scholar
  31. Sullivan GJ, Bridger JM, Cuthbert AP, Newbold RF, Bickmore WA, McStay B (2001) Human acrocentric chromosomes with transcriptionally silent nucleolar organizer regions associate with nucleoli. EMBO J 20:2867–2877PubMedCrossRefGoogle Scholar
  32. Szamalek JM, Goidts V, Searle JB, Cooper DN, Hameister H, Kehrer-Sawatzki H (2006) The chimpanzee-specific pericentric inversions that distinguish humans and chimpanzees have identical breakpoints in Pan troglodytes and Pan paniscusi. Genomics 87:39–45PubMedCrossRefGoogle Scholar
  33. Volobouev VT, Aniskin VM, Lecompte E, Ducroz JF (2002) Patterns of karyotype evolution in complexes of sibling species within three genera of African murid rodents inferred from the comparison of cytogenetic and molecular data. Cytogen Genome Res 96:261–275CrossRefGoogle Scholar
  34. Wachtler F, Stahl A (1993) The nucleolus: a structural and functional interpretation. Micron 24:473–505CrossRefGoogle Scholar
  35. Wallace RL (2002) Rotifers: exquisite metazoans. Integr Comp Biol 42:660–667CrossRefGoogle Scholar
  36. Walsh EJ (1993) Rotifer genetics: integration of classic and modern techniques. Hydrobiologia 255:193–204CrossRefGoogle Scholar
  37. Zrzavý J (2001) The interrelationships of metazoan parasites: a review of phyllum- and higher level hypotheses from recent morphological and molecular analyses. Folia Parasitol 48:81–103PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Marta Bombarová
    • 1
  • František Marec
    • 2
    • 3
  • Petr Nguyen
    • 3
  • Marta Špakulová
    • 1
  1. 1.Parasitological Institute of the Slovak Academy of SciencesKošiceSlovak Republic
  2. 2.Biology Centre, ASCRInstitute of EntomologyČeské BudějoviceCzech Republic
  3. 3.Faculty of Biological SciencesUniversity of South BohemiaČeské BudějoviceCzech Republic

Personalised recommendations