, Volume 131, Issue 2, pp 135–140 | Cite as

Cytogenetic analysis of three species of the genus Haemulon (Teleostei: Haemulinae) from Margarita Island, Venezuela

  • Mauro Nirchio
  • Juan I. Gaviria
  • Claudio Oliveira
  • Irani Alves Ferreira
  • Cesar Martins
Original Paper


This paper describes the karyotype analysis of Haemulon aurolineatum, Haemulon bonariensis and Haemulon plumierii, by Giemsa staining, C-banding, Ag-staining and fluorescent in situ hybridization (FISH), to locate the 18S and 5S rRNA genes. Diploid modal count in the three species was 2n = 48 acrocentric elements. Except for pair 24, which exhibited an unmistakable secondary constriction in all three species, it was not possible to classify them as homologous to each other because differences in chromosome size were too slight between adjacent pairs within a size-graded series. Ag-NOR clusters were located in pair 24 in the three species with signal located on the secondary constriction of these chromosomes. C-banding demonstrated that the three species share the same distribution pattern of the constitutive heterochromatin with centromeric heterochromatic blocks in the 23 chromosome pairs and a pericentromeric block in pair 24 which is coincident with the NORs. FISH experiments showed that 18S rDNA sequences were located coincident with the Ag-NOR site in the three species; however, differences in both the number and chromosome distribution of 5S-rDNA cluster were detected among them. Our data suggest that chromosome evolution of Haemulon has been preserved from major changes in the karyotypic macrostructure, whereas microstructural changes have occurred.


C-banding FISH NOR 5S rDNA 18S rDNA Perciformes Haemulidae 



Funds supporting this study were provided by Consejo de Investigación of Universidad de Oriente, Venezuela. Support to C. Oliveira, I.A. Ferreira and C. Martins was granted by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Brazil and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Brazil.


  1. Accioly IV, Molina WF (2004) Contribuição à citogenética dos gêneros Pomadasys e Anisotremus (Haemulidae, Perciformes). X Simpósio de Citogenética e Genética de Peixes. Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, BrazilGoogle Scholar
  2. Appeldoorn RS, Lindeman KC (1985) Multispecies assessment in coral reef fisheries using higher taxonomic categories as unit stocks, with an analysis of an artisanal haemulid fishery. In: Proceedings of the 5th International Coral Reef Congress, Tahiti 27 May–1 June 1985, vol 5. Miscellaneous papers (A), pp 507–514Google Scholar
  3. Brum MJI (1996) Cytogenetic studies of Brazilian marine fish. Brazil J Genet 19(3):421–427Google Scholar
  4. Brum MJI, Galetti PM (1997) Teleostei ground plan karyotype. J Comp Biol 2(2):91–102Google Scholar
  5. Cequea H, Pérez JE (1971) Variación intra e interespecífica de hemoglobina y proteínas del plasma en algunas especies del género Haemulon. Bol Inst Oceanograf Univ Oriente 10(2):79–85Google Scholar
  6. Cervigón F (1993) Los peces marinos de Venezuela, 2nd ed, vol 2. Fundación Científica Los Roques, Caracas, VenezuelaGoogle Scholar
  7. Duran GA, García CE, Laguarda A (1990) The karyotype and “G” bands of Haemulon aurolienatum Cuvier, 1829 (Pisces: Haemulidae). An Inst Cienc Mar Limnol Univ Nac Auton Mex 17(2):299–307Google Scholar
  8. Foresti F, Oliveira C, Almeida-Toledo LF (1993) A method for chromosome preparations from large specimens of fishes using in vitro short treatment with colchicine. Experientia 49:810–813CrossRefGoogle Scholar
  9. Garcia E, Alvarez MC, Thode G (1987) Chromosome relationships in the genus Blennius (Blennidae, Perciformes). C-banding patterns suggest two karyoevolutional pathways. Genetica 72:27–36CrossRefGoogle Scholar
  10. Gornung E, Gabrielli I, Cataudella S, Sola L (1997) CMA3-banding pattern and fluorescence in situ hybridization with 18S rDNA genes in zebrafish chromosomes. Chromosome Res 5:40–46PubMedCrossRefGoogle Scholar
  11. Gromicho M, Ozouf-Costaz C, Collares-Pereira MJ (2005) Lack of correspondence between CMA3-, Ag-positive signals and 28S rDNA loci in two Iberian minnows (Teleostei, Cyprinidae) evidenced by sequential banding. Cytogenet Genome Res 109:507–511PubMedCrossRefGoogle Scholar
  12. Howell WM, Black DA (1980) Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36:1014–1015PubMedCrossRefGoogle Scholar
  13. Levan A, Fredga K, Sandberg A (1964) Nomenclature for centrometric position on chromosomes. Hereditas 52:201–220CrossRefGoogle Scholar
  14. Lima LCB, Molina WF (2004) Homeostase cariotípica em três espécies do gênero Haemulon (Haemulidae, Perciformes) do litoral Potiguar. X Simpósio de Citogenética e Genética de Peixes. Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, BrazilGoogle Scholar
  15. Lindeman KC (2002) Haemulidae (Grunts). In: Carpenter KE (ed) The living marine resources of the Western Central Atlantic, vol 3. Bony fishes. Part 2 (Opistognathidae to Molidae), sea turtles and marine mammals. FAO Species Identification Guide for Fishery Purposes and American Society of Ichthyologists and Herpetologists Special Publication No. 5. Rome, FAO. 2002. pp 1522–1529Google Scholar
  16. Lucchini S, Nardi I, Barsacchi G, Batistoni R, Andronico F (1993) Molecular cytogenetics of the ribosomal (18S + 28S and 5S) DNA loci in primitive and advanced urodele amphibians. Genome 36:762–773PubMedGoogle Scholar
  17. Martins C, Galetti PM (1999) Chromosomal localization of 5S rDNA genes in Leporinus fish (Anostomidae, Characiformes). Chromosome Res 7:363–367PubMedCrossRefGoogle Scholar
  18. Martins C, Wasko AP (2004) Organization and evolution of 5S ribosomal DNA in the fish genome. In: Williams CR (ed) Focus on genome research. Nova Science Publishers, Hauppauge, NY, USA, pp 289–318Google Scholar
  19. Meyer JL, Shultz ET (1985) Migrating haemulid fishes as a source of nutrients and organic matter on coral reefs. Limnol Oceanogr 30:146–156CrossRefGoogle Scholar
  20. Nelson JS (1994) Fishes of the world, 3rd edn. John Wiley and Sons, Inc., New YorkGoogle Scholar
  21. Nirchio M, Fenocchio AS, Swarça AC, Pérez JE, Granado A, Estrada A, Ron E (2003) Cytogenetic characterization of hybrids offspring between Colossoma macropomum (Cuvier, 1818) and Piaractus brachypomus (Cuvier, 1817) from Caicara del Orinoco, Venezuela. Caryologia 56(4):405–411Google Scholar
  22. Nirchio M, Fenocchio AS, Swarça AC, Pérez JE (2004) Karyology of the toadfish Porichthys plectrodon (Jordan and Gilbert, 1882) (Batrachoididae) from Margarita Island, Venezuela. Mar Biol 146:161–165CrossRefGoogle Scholar
  23. Ohno S (1974) Protochordata, Cyclostomata and Pisces. In: John B (ed) Animal cytogenesis, vol 4, Chordata 1. Börntraeger, Berlin, pp 1–92Google Scholar
  24. Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. PNAS 83:2934–2938PubMedCrossRefGoogle Scholar
  25. Randall JE (1996) Caribbean reef fishes, 3rd edn. T.H.F. Publications, Neptune City, NJ, USAGoogle Scholar
  26. Reagan JD, Sigel MM, Lee HW, Llamass KA, Beasley AR (1968) Chromosomal alterations in marine fish cells in vitro. Can J Genet Cytol 10:448–453Google Scholar
  27. Ron E, Nirchio M (2005) Caracterización citogenética de Haemulon flavolineatum Desmarest 1823 (Pisces: Haemulidae) de la Isla de Margarita, Venezuela. Bol Inst Oceanogr Univ Oriente 44(1):35–40Google Scholar
  28. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  29. Sola L, Cataudella S, Capanna E (1981) New developments in vertebrate cytotaxonomy. III. Karyology of bony fishes: a review. Genetica 54:285–328CrossRefGoogle Scholar
  30. Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306PubMedCrossRefGoogle Scholar
  31. Suzuki H, Sakurai S, Matsuda Y (1996) Rat 5S rDNA spacer sequences and chromosomal assignment of the genes to the extreme terminal region of chromosome 19. Cytogenet Cell Genet 72:1–4PubMedCrossRefGoogle Scholar
  32. Vitturi R, Catalano E, Lo Conte MR, Alessi AM, Amico FP, Colombera D (1991) Intra-populational and intra-individual mosaicisms of Uranoscopus scaber L. (Perciformes, Uranoscopidae). Heredity 67:325–330Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Mauro Nirchio
    • 1
  • Juan I. Gaviria
    • 1
  • Claudio Oliveira
    • 2
  • Irani Alves Ferreira
    • 2
  • Cesar Martins
    • 2
  1. 1.Escuela de Ciencias Aplicadas del MarUniversidad de OrienteBoca del Rio, Isla de MargaritaVenezuela
  2. 2.Departamento de Morfologia, Instituto de BiociênciasUniversidade Estadual PaulistaBotucatuBrazil

Personalised recommendations