Skip to main content
Log in

A statistical model for dissecting genomic imprinting through genetic mapping

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

As a result of nonequivalent genetic contribution of maternal and paternal genomes to offsprings, genomic imprinting or called parent-of-origin effect, has been broadly identified in plants, animals and humans. Its role in shaping organism’s development has been unanimously recognized. However, statistical methods for identifying imprinted quantitative trait loci (iQTL) and estimating the imprinted effect have not been well developed. In this article, we propose an efficient statistical procedure for genomewide estimating and testing the effects of significant iQTL underlying the quantitative variation of interested traits. The developed model can be applied to two different genetic cross designs, backcross and F2 families derived from inbred lines. The proposed procedure is built within the maximum likelihood framework and implemented with the EM algorithm. Extensive simulation studies show that the proposed model is well performed in a variety of situations. To demonstrate the usefulness of the proposed approach, we apply the model to a published data in an F2 family derived from LG/S and SM/S mouse stains. Two partially maternal imprinting iQTL are identified which regulate the growth of body weight. Our approach provides a testable framework for identifying and estimating iQTL involved in the genetic control of complex traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agrawal AF, Brodie ED III, Brown J (2001) Parent–offspring coadaptation and the dual genetic control of maternal care. Science 292:1710–1712

    Article  PubMed  CAS  Google Scholar 

  • Alleman M, Doctor J (2000) Genomic imprinting in plants: observations and evolutionary implications. Plant Mol Biol 43:147–161

    Article  PubMed  CAS  Google Scholar 

  • Bartolomei MS, Tilghman SM (1997) Genomic imprinting in mammals. Annu Rev Genet 31:493–525

    Article  PubMed  CAS  Google Scholar 

  • Bennett ST, Todd JA, Waterworth DM, Franks S, McCarthy MI (1997) Association of insulin gene VNTR polymorphism with polycystic ovary syndrome. Lancet 349:1771–1772

    Article  Google Scholar 

  • Cattanach BM, Beechey CV, Peters J (2004) Interactions between imprinting effects in the mouse. Genetics 168:397–413

    Article  PubMed  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Clapcott SJ, Teale AJ, Kemp SJ (2000) Evidence for genomic imprinting of the major QTL controlling susceptibility to trypanosomiasis in mice. Parasite Immunol (Oxf) 22:259–264

    Article  CAS  Google Scholar 

  • Cui YH, Casella G, Wu RL (2004) Mapping quantitative trait locus interactions from the maternal and offspring genomes. Genetics 167:1017–1026

    Article  PubMed  CAS  Google Scholar 

  • Cui YH, Lu Q, Cheverud JM, Littell RC, Wu RL (2006) Model for mapping imprinted quantitative trait loci in an inbred F2 design. Genomics 87:543–551

    Article  PubMed  CAS  Google Scholar 

  • de Koning D-J, Rattink AP, Harlizius B, van Arendonk JAM, Brascamp EW et al (2000) Genome-wide scan for body composition in pigs reveals important role of imprinting. Proc Natl Acad Sci USA 97:7947–7950

    Article  PubMed  Google Scholar 

  • de Koning D-J, Bovenhuis H, van Arendonk JAM (2002) On the detection of imprinted quantitative trait loci in experimental crosses of outbred species. Genetics 161:931–938

    PubMed  Google Scholar 

  • DeChiara TM, Robertson EJ, Efstratiadis A (1991) Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64:849–859

    Article  PubMed  CAS  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplet data via the EM algorithm. J R Statist Soc B 39(1):1–38

    Google Scholar 

  • Dietrich WF, Miller J, Steen R, Merchant MA, Damron-Boles D et al (1996) A comprehensive genetic map of the mouse genome. Nature 380:149–152

    Article  PubMed  CAS  Google Scholar 

  • Falls JG, Pulford DJ, Wylie AA, Jirtle RL (1999) Genomic imprinting: implications for human disease. Am J Pathol 154:635–647

    PubMed  CAS  Google Scholar 

  • Feinberg AP (2001) Genomic imprinting and cancer. In: Scriver CR, Beaudet al, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 525–537

    Google Scholar 

  • Haldane JBS (1922) The part played by recurrent mutation in evolution. Am Nat 67:5–9

    Article  Google Scholar 

  • Hanson RL, Kobes S, Lindsay RS, Kmowler WC (2001) Assessment of parent-of-origin effects in titative traits. Am J Hum Genet 68:951–962

    Article  PubMed  CAS  Google Scholar 

  • Horike S, Cai S, Miyano M, Cheng J-F, Kohwi-Shigematsu T (2005) Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet 37:31–40

    Article  PubMed  CAS  Google Scholar 

  • Jeon J-T, Carlborg O, Tornsten A, Giuffra E, Amarger V et al (1999) A paternally expressed nd cardiac muscle mass in pigs maps to the IGF2 locus. Nat Genet 21:157–158

    Article  PubMed  CAS  Google Scholar 

  • Knapp M, Strauch K (2004) Affected-sib-pair test for linkage based on constraints for identical-by-descent distributions corresponding to disease models with imprinting. Genet Epidemiol 26:273–285

    Article  PubMed  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Lin M, Lou X-Y, Chang M, Wu RL (2003) A general statistical framework for mapping quantitative trait loci in nonmodel systems: issue for characterizing linkage phases. Genetics 165:901–913

    PubMed  CAS  Google Scholar 

  • Louis TA (1982) Finding the observed information matrix when using the EM algorithm. J Roy Stat Soc Ser B 44:226–233

    Google Scholar 

  • Luedi PJ, Hartemink AJ, Jirtle RL (2005) Genome-wide prediction of imprinted murine genes. Genome Res 15:875–884

    Article  PubMed  CAS  Google Scholar 

  • McInnis MG, Lan TH, Willour VL, Mcmahon FJ, Simpson SG et al (2003) Genome-wide scan of bipolar disorder in 65 pedigrees: supportive evidence for linkage at 8q24, 18q22, 4q32, 2p12, and 13q12. Mol Psychiatry 8:288–298

    Article  PubMed  CAS  Google Scholar 

  • Morison IM, Ramsay JP, Spencer HG (2005) A census of mammalian imprinting. Trends Genet 21:457–465

    Article  PubMed  CAS  Google Scholar 

  • Naumova AK, Croteau S (2004) Mechanisms of epigenetic variation: polymorphic imprinting. Curr Genomics 5:417–429

    Article  CAS  Google Scholar 

  • Nezer C, Moreau L, Brouwers B, Coppieters W, Detilleux J et al (1999) An imprinted QTL with major effect on muscle mass and fat deposition maps to the IGF2 locus in pigs. Nat Genet 21:155–156

    Article  PubMed  CAS  Google Scholar 

  • Ono R, Shiura H, Aburatani H, Kohda T, Kaneko-Ishino T, Ishino F (2003) Identification of a large novel imprinted gene cluster on mouse proximal chromosome 6. Genome Res 13:1696–1705

    Article  PubMed  CAS  Google Scholar 

  • Paterson AD, Naimark DMJ, Petronis A (1999) The analysis of parental origin of alleles may detect susceptibility loci for complex disorders. Hum Hered 49:197–204

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer K (2000) Mechanisms of genomic imprinting. Am J Hum Genet 67:777–787

    Article  PubMed  CAS  Google Scholar 

  • Sandovici I, Leppert M, Hawk PR, Suarez A, Linares Y, Sapienza C (2003) Familial aggregation of abnormal methylation of parental alleles at the IGF2/H19 and IGF2R differentially methylated regions. Hum Mol Genet 12:1569–1578

    Article  PubMed  CAS  Google Scholar 

  • Sandovici I, Kassovska-Bratinova S, Loredo-Osti JC, Leppert M, Suazez A et al (2005) Interindividual variability and parent of origin DNA methylation differences at specific human Alu elements. Hum Mol Genet 14:2135–2143

    Article  PubMed  CAS  Google Scholar 

  • Sapienza C (1990) Sex-linked dosage-sensitive modifiers as imprinting genes. Dev Suppl 107–113

  • Shete S, Zhou X, Amos CI (2003) Genomic imprinting and linkage test for quantitative trait loci in extended pedigrees. Am J Hum Genet 73:933–938

    Article  PubMed  CAS  Google Scholar 

  • Spencer HG (2002) The correlation between relatives on the supposition of genomic imprinting. Genetics 161:411–417

    PubMed  CAS  Google Scholar 

  • Strauch K, Fimmers R, Kurz T, Deichmann KA, Wienker TF, Baur MP (2000) Parametric and nonparametric multipoint linkage analysis with imprinting and two-locus-trait models: application to mite sensitization. Am J Hum Genet 66:1945–1957

    Article  PubMed  CAS  Google Scholar 

  • Tuiskula-Haavisto M, de Koning DJ, Honkatukia M, Schulman NF, Maki-Tanila A, Vilkki J (2004) Quantitative trait loci with parent-of-origin effects in chicken. Genet Res 84:57–66

    Article  PubMed  CAS  Google Scholar 

  • Van Laere AS, Nguyen M, Braunschweig M, Nezer C, Collette C et al (2003) A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 425:832–836

    Article  PubMed  CAS  Google Scholar 

  • Vaughn TT, Pletscher LS, Peripato A, King-Ellison K, Adams E, Erikson C, Cheverud JM (1999) Mapping quantitative trait loci for murine growth. A closer look at genetic architecture. Genet Res 74:313–322

    Article  PubMed  CAS  Google Scholar 

  • Wade MJ (1998) The evolutionary genetics of maternal effects. In: Mousseau TA, Fox CW (eds) Maternal effects as adaptations. Oxford University Press, New York, pp 5–21

    Google Scholar 

  • Wolf JB (2000) Gene interactions from maternal effects. Evolution 54:1882–1898

    PubMed  CAS  Google Scholar 

  • Wolf JB, Vaughn TT, Pletscher LS, Cheverud JM (2002) Contribution of maternal effect QTL to genetic architecture of early growth in mice. Heredity 89:300–310

    Article  PubMed  CAS  Google Scholar 

  • Xu S (1998) Mapping quantitative trait loci using multiple families of line crosses. Genetics 148:517–524

    PubMed  CAS  Google Scholar 

  • Zou F, Yandell BS, Fine JP (2001) Statistical issues in the analysis of quantitative traits in combined crosses. Genetics 158:1339–1346

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees and the editor for their valuable comments on the manuscript. This research was supported by a start-up fund from Michigan State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuehua Cui.

Appendices

Appendix A: EM algorithm for estimating the genetic parameters

The following algorithm is applied to Design I. Similar algorithm can be obtained for Design II with little modification and hence is omitted here.

The log-likelihood function of Eq. (5) can be written as

$$ \log L(\varvec{\Theta}\vert {\bf{M}},{\bf y}_1, {\bf y}_2)= \sum^{n_1}_{i=1}\log\left[\pi_{1\vert i}f_1(y_{1i})+\pi_{2\vert i}f_2(y_{1i})\right]+\sum^{n_2}_{i^{\prime}=1}\log\left[\pi_{3\vert i^{\prime}}f_3(y_{2i^{\prime}})+\pi_{4\vert i^{\prime}}f_4(y_{2i^{\prime}})\right] $$

with a derivative for a particular element Θ,

$$ \begin{aligned} \frac{\partial}{\partial{\varvec{\Theta}}_{\ell}} \log L(\varvec{\Theta})\\ &=\sum_{i=1}^{n_1}\sum_{j=1}^2\frac{\pi_{j\vert i}\frac{\partial}{\partial{\varvec {\Theta}}_\ell}f_j(y_{1i})}{\sum_{j=1}^2\pi_{j\vert i}f_j(y_{1i})}+ \sum_{i^{\prime}=1}^{n_2}\sum_{j^{\prime}=3}^4\frac {\pi_{j^{\prime}\vert i^{\prime}}\frac{\partial}{\partial {\varvec{\Theta}}_\ell}f_{j^{\prime}}(y_{2i^{\prime}})} {\sum_{j^{\prime}=3}^4\pi_{j^{\prime}\vert i^{\prime}} f_{j^{\prime}}(y_{2i^{\prime}})}\\ &=\sum_{i=1}^{n_1}\sum_{j=1}^{2}\frac{\pi_{j\vert i}f_j(y_{1i})}{\sum_{j=1}^2 \pi_{j\vert i}f_j(y_{1i})}\frac{\partial}{\partial{\varvec{\Theta}}_\ell}\log f_j(y_{1i})+\sum_{i^{\prime}=1}^{n_2}\sum_{j^{\prime}=3}^{4} \frac{\pi_{j^{\prime}\vert i^{\prime}}f_{j^{\prime}}(y_{2i^{\prime}})} {\sum_{j^{\prime}=3}^4 \pi_{j^{\prime}\vert i^{\prime}}f_{j^{\prime}}(y_{2i^{\prime}})} \frac{\partial}{\partial{\varvec {\Theta}}_\ell}\log f_{j^{\prime}}(y_{2i^{\prime}})\\ &=\sum_{i=1}^{n_1}\sum_{j=1}^{2}\Pi_{j\vert i}\frac{\partial}{\partial {\varvec{\Theta}}_\ell}\log f_j(y_{1i})+ \sum_{i^{\prime}=1}^{n_2}\sum_{j^{\prime}=3}^{4}\Pi_{j^{\prime}\vert i^{\prime}} \frac{\partial}{\partial{\varvec{\Theta}}_\ell} \log f_{j^{\prime}}(y_{2i^{\prime}}) \end{aligned} $$
(A1)

where we define

$$ \Pi_{j\vert i}=\frac{\pi_{j\vert i}f_j(y_{1i})}{\sum^2_{j=1}\pi_{j\vert i}f_j(y_{1i})} \quad{\rm for} \ j=1,2 $$
(A2)

and

$$ \Pi_{j^{\prime}\vert i^{\prime}}=\frac{\pi_{j^{\prime}\vert i^{\prime}}f_{j^{\prime}}(y_{2i^{\prime}})}{\sum^4_{j^{\prime}=3}\pi_{j^{\prime}\vert i^{\prime}}f_{j^{\prime}}(y_{2i^{\prime}})}\quad {\rm for} \ j^{\prime}=3,4 $$
(A3)

which can be thought of as posterior probabilities of QTL genotypes given on the marker genotypes derived from the two backcross families. Given the initial values for the unknown parameters \(\varvec{\Theta}\), we can update \(\varvec{\Pi}_j=\Pi_{j\vert i}\) and \(\varvec{\Pi}_{j^{\prime}}=\Pi_{j^{\prime}\vert i^{\prime}}\) (E-step). The estimated posterior probabilities are used to obtain the new MLEs of \(\varvec{\Theta}\) (M step) based on the log-likelihood equations

$$ \hat{\mu}=\frac{{\bf y}_1-{\hat a}[{\bf 1}^{\prime}\varvec{\Pi}_1+{\bf 1}^{\prime}\varvec{\Pi}_2{\hat \gamma}_1]+{\bf y}_2-{\hat a}[{\bf 1}^{\prime}\varvec{\Pi}_3{\hat \gamma}_2+{\bf 1}^{\prime}\varvec{\Pi}_4]}{n} $$
(A4)
$$ \hat{a}=\frac{[{\bf \Pi}_1^{\prime}+\varvec{\Pi}_2^{\prime}{\hat \gamma}_1]({\bf y}_1-\hat{\mu})+[\varvec{\Pi}_3^{\prime}(1+{\hat \gamma}_2)-1]({\bf y}_2-\hat{\mu})}{{\bf 1}^{\prime}(\varvec{\Pi}_1+\varvec{\Pi}_2\hat{\gamma}_1+\varvec{\Pi}_3+\varvec{\Pi}_3\hat{\gamma}_2)} $$
(A5)
$$ \hat{\gamma}_1=\frac{\varvec{\Pi}_{2}^{\prime}({\bf y}_1-{\hat \mu})}{\hat{a}{\bf 1}^{\prime}\varvec{\Pi}_2} $$
(A6)
$$ \hat{\gamma}_2=\frac{\varvec{\Pi}_{3}^{\prime}({\bf y}_2-{\hat \mu})}{\hat{a}{\bf 1}^{\prime}\varvec{\Pi}_3} $$
(A7)
$$ \hat{\sigma}^2=\frac{\varvec{\Pi}_{1}^{\prime}({\bf y}_1-\hat{\mu}-\hat{a})+\varvec{\Pi}_{2}^{\prime}({\bf y}_1-\hat{\mu}-\hat{a}\hat{\gamma}_1)+\varvec{\Pi}_{3}^{\prime}({\bf y}_2-\hat{\mu}-\hat{a}\hat{\gamma}_2)+\varvec{\Pi}_{4}^{\prime}({\bf y}_2-\hat{\mu}+\hat{a})}{n} $$
(A8)

which are derived by letting the derivative in Eq. (A1) equal to zero. This iterative process is repeated between Eqs. (A2) and (A8) until the specified convergence criteria is satisfied. The values at convergence are regarded as the MLEs.

Appendix B: Assessing statistical significance by parametric bootstrap

To assess the statistical significance of the iTest 1–3, we use parametric bootstrap method. The detailed approach is described as follows:

  • Step 1: Obtain the MLEs of parameters under the H 0, denoted as \(\hat{\varvec{\Theta}}_0\).

  • Step 2: Simulate full phenotype information based on \(\hat{\varvec{\Theta}}_0\). Note at this step, we only simulate phenotype data and keep the original marker information.

  • Step 3: With the simulated phenotype and the original marker data, we calculate the LR statistic at the test position (specific chromosome location) and save the LR value denoted as LR *.

  • Step 4: Repeat Step 2–3 for B times and obtain the bootstrap LR test statistics LR * 1,...,LR * B .

  • Step 5: Calculate the bootstrap empirical P-value as

    $$ P\hbox{-value}=\frac{1}{B}\sum_{i=1}^B {\rm I}[LR^*_i > LR_{{\rm obs}}] $$

    where I is the indicator function with value 1 if LR * i  >  LR obs and 0 otherwise, and LR obs is the observed LR test statistic calculated based on real data.

This empirical P-value is then compared with a significant level α. A general recommendation is to generate B = 1000 bootstrap samples through which the empirical P-value is calculated.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, Y., Cheverud, J.M. & Wu, R. A statistical model for dissecting genomic imprinting through genetic mapping. Genetica 130, 227–239 (2007). https://doi.org/10.1007/s10709-006-9101-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-006-9101-x

Keywords

Navigation