Skip to main content
Log in

Resolving the genetic basis of invasiveness and predicting invasions

  • ORIGINAL PAPER
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Considerable effort has been invested in determining traits underlying invasiveness. Yet, identifying a set of traits that commonly confers invasiveness in a range of species has proven elusive, and almost nothing is known about genetic loci affecting invasive success. Incorporating genetic model organisms into ecologically relevant studies is one promising avenue to begin dissecting the genetic underpinnings of invasiveness. Molecular biologists are rapidly characterizing genes mediating developmental responses to diverse environmental cues, i.e., genes for plasticity, as well as to environmental factors likely to impose strong selection on invading species, e.g., resistance to herbivores and competitors, coordination of life-history events with seasonal changes, and physiological tolerance of heat, drought, or cold. Here, we give an overview of molecular genetic tools increasingly used to characterize the genetic basis of adaptation and that may be used to begin identifying genetic mechanisms of invasiveness. Given the divergent traits that affect invasiveness, “invasiveness genes” common to many clades are unlikely, but the combination of developmental genetic advances with further evolutionary studies and modeling may provide a framework for identifying genes that account for invasiveness in related species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso-Blanco A, Peeters AJM, Koornneef M, Lister C, Dean C, van den Bosch N, Pot J, Kuiper MT (1998) Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population. Plant J 14:259–271

    Article  PubMed  CAS  Google Scholar 

  • Ardlie KG, Kruglyak L, Seielstad M (2002) Patterns of linkage disequilibrium in the human genome. Nat Rev Genet 3:299–309

    Article  PubMed  CAS  Google Scholar 

  • Ausín I, Alonso-Blanco C, Martínez-Zapater J (2005) Environmental regulation of flowering. Int J Dev Biol 49:689–705

    Article  PubMed  CAS  Google Scholar 

  • Benz J (2006) An on-line Registry of Ecological Models containing many entries for economic plants is located at http://eco.wiz.uni-kassel.de/ecobas.html

  • Borevitz JO, Nordborg M (2003) The impact of genomics on the study of natural variation in Arabidopsis. Plant Physiol 132:718–725

    Article  PubMed  CAS  Google Scholar 

  • Botto JF, Smith H (2002) Differential genetic variation in adaptive strategies to a common environmental signal in Arabidopsis accessions: phytochrome-mediated shade avoidance. Plant Cell Environ 25:57–67

    Article  Google Scholar 

  • Bouman BAM, van Keulen H, van Laar HH, Rabbinge R (1996) The ‘School of de Wit’ crop growth simulation models: a pedigree and historical overview. Agric Syst 52:171–198

    Article  Google Scholar 

  • Brandman O, Ferrell JE Jr, Li R, Meyer T (2005) Interlinked fast and slow positive feedback loops drive reliable cell decisions. Science 310:496–498

    Article  PubMed  CAS  Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54

    Article  Google Scholar 

  • Callahan HS, Pigliucci M (2002) Shade-induced plasticity and its ecological significance in wild populations of Arabidopsis thaliana. Ecology 83:1965–1980

    Google Scholar 

  • Carlson AM, Gorchov DL (2004) Effects of herbicide on the invasive biennial Alliaria petiolata (garlic mustard) and initial responses of native plants in a southwestern Ohio forest. Restor Ecol 12:559–567

    Article  Google Scholar 

  • Chhandak B, Halfhill MD, Mueller TC, Stewart CNJ (2004) Weed genomics: new tools to understand weed biology. Trends Plant Sci 9:1360–1385

    Google Scholar 

  • Cooper M, Hammer GL (eds) (2005) Complex traits and plant breeding—can we understand the complexities of gene-to-phenotype relationships and use such knowledge to enhance plant breeding outcomes. Aust J Agric Res 56(special issue):869–960

    Article  Google Scholar 

  • David JR, Gibert P, Moreteau B (2004) Evolution of reaction norms. In: Dewitt TJ, Scheiner SM (eds) Phenotypic plasticity. Oxford University Press, New York, pp. 50–63

    Google Scholar 

  • Dodd AN, Salathia N, Hall A, Kevei E, Toth R, Nagy F, Hibberd JM, Millar AJ, Webb AAR (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630–633

    Article  PubMed  CAS  Google Scholar 

  • Donatelli M, Bindi M, Porter JR, van Ittersum MK (eds) (2002) Process simulation and application of cropping systems models. Eur J Agron 18(special issue):1–185

    Google Scholar 

  • Donohue K, Polisetty CR, Wender NJ (2005) Genetic basis and consequences of niche construction: plasticity-induced genetic constraints on the evolution of seed dispersal in Arabidopsis thaliana. Am Nat 165:537–550

    Article  PubMed  Google Scholar 

  • Dorn LA, Pyle EH, Schmitt J (2000) Plasticity to light cues and resources in Arabidopsis thaliana: testing for adaptive value and costs. Evolution 54:1982–1994

    PubMed  CAS  Google Scholar 

  • Dudley SA, Schmitt J (1996) Testing the adaptive plasticity hypothesis: density-dependent selection on manipulated stem length in Impatiens capensis. Am Nat 147:445–465

    Article  Google Scholar 

  • Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci USA 97:7043–7050

    Article  PubMed  CAS  Google Scholar 

  • Endler JA (1986) Natural selection in the wild. Princeton University Press, Princeton

    Google Scholar 

  • Falconer DS, Mackay TFC (1997) Introduction to quantitative genetics. Addison Wesley Longman Ltd, Essex

    Google Scholar 

  • Fankhauser C, Chory J (1997) Light control of plant development. Annu Rev Cell Dev Biol 13:203–229

    Article  PubMed  CAS  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Oxford University Press, Oxford

    Google Scholar 

  • Forger D, Drapeau M, Collins B, Blau J (2005) A new model for circadian clock research? Mol Syst Biol. DOI 10.1038/msb4100019

  • Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, Coupland G, Putterill J (1999) GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J 18:4679–4688

    Article  PubMed  CAS  Google Scholar 

  • Galen C, Huddle J, Liscum E (2004) An experimental test of the adaptive evolution of phototropins: blue-light photoreceptors controlling phototropism in Arabidopsis thaliana. Evolution 58:515–523

    PubMed  CAS  Google Scholar 

  • Geiger-Thornsberry GL, Mackay TFC (2002) Association of single-nucleotide polymorphisms at the Delta locus with genotype by environment interaction for sensory bristle number in D. melanogaster. Genet Res 79:211–218

    Article  PubMed  CAS  Google Scholar 

  • Goodnight CJ (1995) Epistasis and the increase in additive genetic variance: implications for phase I of Wright’s shifting balance process. Evolution 49:502–511

    Article  Google Scholar 

  • Griffith C, Kim E, Donohue K (2004) Life-history variation and adaptation in the historically mobile plant Arabidopsis thaliana in North America. Am J Bot 91:837–849

    Google Scholar 

  • Grimm SS, Jones JW, Boote KJ, Hesketh JD (1993) Parameter estimation for predicting flowering date of soybean cultivars. Crop Sci 33:137–144

    Article  Google Scholar 

  • Hanks J, Ritchie JT (1991) Modeling plant and soil systems. ASA, CSSA, SSSA, Madison

    Google Scholar 

  • Hardin PE (2004) Transcription regulation within the circadian clock: the E-box and beyond. J Biol Rhythms 19:348–360

    Article  PubMed  CAS  Google Scholar 

  • Holm L, Doll J, Holm E, Pancho J, Herberger J (1997) World weeds: natural histories and distribution. Wiley, New York

    Google Scholar 

  • Hoogenboom G (2006) Readers wishing to simulate a selection of crops can do so on-line using daily weather data for locations in the state of Georgia (USA) at http://www.griffin.uga.edu/aemn/cg i-bin/AEMN.pl?site = AAAA&report = ds

  • Hoogenboom G, Jones JW, Boote KJ (1992) Modeling the growth development, and yield of grain legumes using SOYGRO, PNUTGRO, and BEANGRO: a review. Trans ASAE 35:2043–2056

    Google Scholar 

  • Huq E, Quail PH (2002) PIF4, a phytochrome-interacting BHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO J 21:2441–2450

    Article  PubMed  CAS  Google Scholar 

  • Huq E, Tepperman JM, Quail PH (2000) GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proc Natl Acad Sci USA 97:9789–9794

    Article  PubMed  CAS  Google Scholar 

  • Irmak A, Jones JW, Mavromatis T, Welch SM, Boote KJ, Wilkerson GG (2000) Evaluating methods for simulating soybean cultivar responses using cross validation. Agron J 92:1140–1149

    Article  CAS  Google Scholar 

  • Jamieson PD, Brooking IR, Semenov MA, Porter JR (1998) Making sense of wheat development: a critique of methodology. Field Crops Res 55:117–127

    Article  Google Scholar 

  • Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290:344–347

    Article  PubMed  CAS  Google Scholar 

  • Kingsolver JG, Hoekstra HE, Hoekstra JM, Berrigan D, Vignieri SN, Hill CE, Hoang A, Gibert P, Beerli P (2001) The strength of phenotypic selection in natural populations. Am Nat 157:245–261

    Article  PubMed  CAS  Google Scholar 

  • Kiniry JR, Williams JR, Gassman PW, Debaeke P (1992) A general, process-oriented model for two competing plant species. Trans ASAE 35:801–810

    Google Scholar 

  • Kliebenstein DJ, Gershenzon J, Mitchell-Olds T (2001) Comparative quantitative trait loci mapping of aliphatic, indolic and benzylic glucosinolate production in Arabidopsis thaliana leaves and seeds. Genetics 159(1):359–370

    PubMed  CAS  Google Scholar 

  • Kliebenstein DJ, Figuth A, Mitchell-Olds T (2002a) Genetic architecture of plastic methyl jasmonate responses in Arabidopsis thaliana. Genetics 161(4):1685–1696

    CAS  Google Scholar 

  • Kliebenstein D, Pedersen D, Barker B, Mitchell-Olds T (2002b) Comparative analysis of quantitative trait loci controlling glucosinolates, myrosinase and insect resistance in Arabidopsis thaliana. Genetics 161:325–332

    CAS  Google Scholar 

  • Leblanc ML, Cloutier DC, Stewart KA, Hamel C (2004) Calibration and validation of a common lambsquarters (Chenopodium album) seedling emergence model. Weed Sci 52:61–66

    Article  CAS  Google Scholar 

  • Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391

    Article  Google Scholar 

  • Leips J, Mackay TFC (2000) Quantitative trait loci for life span in Drosophila melanogaster: interactions with genetic background and larval density. Genetics 155:1773–1788

    PubMed  CAS  Google Scholar 

  • Lexer C, Welch ME, Durphy JL, Rieseberg LH (2003) Natural selection for salt tolerance quantitative trait loci (QTLs) in wild sunflower hybrids: implications for the origin of Helianthus paradoxus, a diploid hybrid species. Mol Ecol 12:1225–1235

    Article  PubMed  CAS  Google Scholar 

  • Lister C, Dean C (1993) Recombinant inbred lines for mapping RFLP and phenotypic markers in Arabidopsis thaliana. Plant J 4:745–750

    Article  CAS  Google Scholar 

  • Locke JCW, Southern MM, Kozma-Bognar L, Hibberd V, Brown PE, Turner MS, Millar AJ (2005) Extension of a genetic network model by iterative experimentation and mathematical analysis. Mol Syst Biol. DOI 10.1038/msb4100018

  • Long AD, Lyman RF, Langley CH, Mackay TFC (1998) Two sites in the Delta gene region contribute to naturally occurring variation in bristle number in Drosophila melanogaster. Genetics 149:999–1017

    PubMed  CAS  Google Scholar 

  • Ma CX, Casella G, Wu RL (2002) Functional mapping of quantitative trait loci underlying the character process: a theoretical framework. Genetics 161:1751–1762

    PubMed  Google Scholar 

  • Mackay TFC (2001) Quantitative trait loci in Drosophila. Nat Genet 2:11–20

    CAS  Google Scholar 

  • Malmberg RL, Held S, Waits A, Mauricio R (2005) Epistasis for fitness-related quantitative traits in Arabidopsis thaliana grown in the field and in the greenhouse. Genetics 171(4): 2013–2027

    Article  PubMed  CAS  Google Scholar 

  • Maloof JN, Borevitz JO, Dabi T, Lutes J, Nehring RB, Redfern JL, Trainer GT, Wilson JM, Asami T, Berry CC, Weigel D, Chory J (2001) Natural variation in light sensitivity of Arabidopsis. Nat Genet 29(4):441–446

    Article  PubMed  CAS  Google Scholar 

  • Mauricio R (1998) Costs of resistance to natural enemies in field populations of the annual plant Arabidopsis thaliana. Am Nat 151:20–28

    Article  PubMed  CAS  Google Scholar 

  • Mauricio R (2001) Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology. Nat Rev Genet 2:370–381

    Article  PubMed  CAS  Google Scholar 

  • McKay JK, Richards JH, Mitchell-Olds T (2003) Genetics of drought adaptation in Arabidopsis thaliana: I. Pleiotropy contributes to genetic correlations among ecological traits. Mol Ecol 12:1137–1151

    Article  PubMed  CAS  Google Scholar 

  • Meekins JF, McCarthy BC (1999) Competitive ability of Alliaria petiolata (garlic mustard, Brassicaceae), an invasive, nonindigenous forest herb. Int J Plant Sci 160:743–752

    Article  Google Scholar 

  • Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956

    Article  PubMed  CAS  Google Scholar 

  • Michaels SD, Amasino RM (2000) Memories of winter: vernalization and the competence to flower. Plant Cell Environ 23:1145–1153

    Article  Google Scholar 

  • Millar AJ (1999) Tansley review no. 103—biological clocks in Arabidopsis thaliana. New Phytol 141:175–197

    Article  CAS  Google Scholar 

  • Mitchell-Olds T (1996) Genetic constraints on life-history evolution: Quantitative-trait loci influencing growth and flowering in Arabidopsis thaliana. Evolution 50:140–145

    Article  Google Scholar 

  • Mitchell-Olds T (2001) Arabidopsis thaliana and its wild relatives: a model system for ecology and evolution. Trends Ecol Evol 16:693–700

    Article  Google Scholar 

  • Napp-Zinn K (1976) Population genetical and geographical aspects of germination and flowering in Arabidopsis thaliana. Arab Inf Serv 13

  • Neff MM, Fankhauser C, Chory J (2000) Light: an indicator of time and place. Genes Dev 14:257–271

    PubMed  CAS  Google Scholar 

  • Ni M, Tepperman JM, Quail PH (1998) PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 95:657–667

    Article  PubMed  CAS  Google Scholar 

  • Ni M, Tepperman JM, Quail PH (1999) Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light. Nature 400:781–784

    Article  PubMed  CAS  Google Scholar 

  • Nordborg M, Bergelson J (1999) The effect of seed and rosette cold treatment on germination and flowering time in some Arabidopsis thaliana (Brassicaceae) ecotypes. Am J Bot 86:470

    Article  PubMed  Google Scholar 

  • Nordborg M, Hu TT, Ishino Y, Jhaveri J, Toomajian C, Zheng HG, Bakker E, Calabrese P, Gladstone J, Goyal R, Jakobsson M, Kim S, Morozov Y, Padhukasahasram B, Plagnol V, Rosenberg NA, Shah C, Wall JD, Wang J, Zhao KY, Kalbfleisch T, Schulz V, Kreitman M, Bergelson J (2005) The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol 3(7): 1289–1299

    Article  CAS  Google Scholar 

  • Nuzhdin SV, Pasyukova EG, Dilda CL, Zeng Z-B, Mackay TFC (1997) Sex-specific quantitative trait loci affecting longevity in Drosophila melanogaster. Proc Natl Acad Sci USA 94:9734–9739

    Article  PubMed  CAS  Google Scholar 

  • Oliver LR (1979) Influence of soybean (Glycine max) planting date on velvetleaf (Abutilon theophrasti). Weed Sci 27:183–188

    Google Scholar 

  • Olsen KM, Halldorsdottir SS, Stinchcombe JR, Weinig C, Schmitt J, Purugganan MD (2004) Linkage disequilibrium mapping of Arabidopsis CRY2 flowering time alleles. Genetics 167:1361–1369

    Article  PubMed  CAS  Google Scholar 

  • Palsson A, Gibson G (2004) Association between nucleotide variation in Egfr and wing shape in Drosophila melanogaster. Genetics 167:1187–1198

    Article  PubMed  CAS  Google Scholar 

  • Paz JO, Batchelor WD, Tylka GL, Hartzler RG (2001) A modeling approach to quantify the effects of spatial soybean yield limiting factors. Trans ASAE 44:1329–1334

    Google Scholar 

  • Penrose LDJ, Rawson HM, Zajac M (2003) Prediction of vernalisation in three Australian vrn responsive wheats. Aust J Agric Res 54:283–292

    Article  Google Scholar 

  • Pritchard JK, Donnelly P (2001) Case–control studies of association in structured or admixed populations. Theor Popul Biol 60:227–237

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000) Association mapping in structured populations. J Hum Genet 67:170–181

    Article  CAS  Google Scholar 

  • Rand DA, Shulgin BV, Salazar JD, Millar AJ (2006) Uncovering the design principles of circadian clocks: mathematical analysis of flexibility and evolutionary goals. J Theor Biol 238:616–635

    Article  PubMed  CAS  Google Scholar 

  • Ratcliffe D (1965) Germination characteristics and their inter- and intra-population variability in Arabidopsis. Arab Inf Serv 13

  • Rejmanek M (2000) Invasive plants: approaches and predictions. Aust J Ecol 25:497–506

    Article  Google Scholar 

  • Remington DL, Ungerer MC, Purugganan MD (2001) Map-based cloning of quantitative trait loci: progress and prospects. Genet Res 78:213–218

    Article  PubMed  CAS  Google Scholar 

  • Reymond M, Muller B, Leonardi A, Charcosset A, Tardieu F (2003) Combining quantitative trait loci analysis and an ecophysiological model to analyze the genetic variability of the responses of maize leaf growth to temperature and water deficit. Plant Physiol 131:664–675

    Article  PubMed  CAS  Google Scholar 

  • Richards RA (1996) Defining selection criteria to improve yield under drought. Plant Growth Regul 20:157–166

    Article  CAS  Google Scholar 

  • Richardson DM, Pysek P, Rejmanek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107

    Article  Google Scholar 

  • Ritchie JT, Singh U, Goodwin DC, Bowen WT (1998) Cereal growth, development, and yield. In: Tsuji GY, Hoogenboom G, Thornton PK (eds) Understanding options for agricultural production. Kluwer Academic, Dordrecht, pp. 79–97

    Google Scholar 

  • Schmitt J, McCormac AC, Smith H (1995) A test of the adaptive plasticity hypothesis using transgenic and mutant plants disabled in phytochrome-mediated elongation responses to neighbors. Am Nat 146:937–953

    Article  Google Scholar 

  • Schranz ME, Quijada P, Sung SB, Lukens L, Amasino R, Osborn TC (2002) Characterization and effects of the replicated flowering time gene FLC in Brassica rapa. Genetics 162:1457–1468

    PubMed  CAS  Google Scholar 

  • Sharrock RA, Quail PH (1989) Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Dev 3:1745–1757

    Article  PubMed  CAS  Google Scholar 

  • Shimizu KK, Purugganan MD (2005) Evolutionary and ecological genomics of Arabidopsis thaliana. Plant Physiol 138:578–584

    Article  PubMed  CAS  Google Scholar 

  • Smith H (2000) Phytochromes and light signal perception by plants—an emerging synthesis. Nature 407:585–591

    Article  PubMed  CAS  Google Scholar 

  • Soh MS, Song P-S, Choi G (1999) Phytochrome signalling is mediated through nucleoside diphosphate kinase 2. Nature 401:610–613

    Article  PubMed  Google Scholar 

  • Spencer NR (1984) Velvetleaf, Abutilon theophrasti (Malvaceae), history and economic impact in the United States. Econ Bot 38:407–416

    Google Scholar 

  • Stinchcombe JR, Weinig C, Ungerer M, Olsen KM, Mays C, Halldorsdottir SS, Purugganan MD, Schmitt J (2004) A latitudinal cline in flowering time in Arabidopsis thaliana modulated by the flowering time gene FRIGIDA. Proc Natl Acad Sci USA 101:4712–4717

    Article  PubMed  CAS  Google Scholar 

  • Tan DKY, Birch CJ, Wearing AH, Rickert KG (2000) Predicting broccoli development. II. Comparison and validation of thermal time models. Sci Hortic 86:89–101

    Article  Google Scholar 

  • Tardieu F (2003) Virtual plants: modeling as a tool for the genomics of tolerance to water deficit. Trends Plant Sci 8:9–14

    Article  PubMed  CAS  Google Scholar 

  • Tardieu F, Reymond M, Muller B, Simonneau T, Sadok W, Welcker C (2005) Linking physiological and genetic analyses of the control of leaf growth under fluctuating environmental conditions. Aust J Agric Res 56:937–946

    Article  Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES 4th (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    Article  PubMed  CAS  Google Scholar 

  • Ungerer MC, Halldorsdottir SS, Modliszewski JL, Mackay TFC, Purugganan MD (2002) Quantitative trait loci for inflorescence development in Arabidopsis thaliana. Genetics 160:1133–1151

    PubMed  CAS  Google Scholar 

  • van Eeuwijk FA, Malosetti M, Yin X, Struik PC, Stam P (2005) Statistical models for genotype by environment data: from conventional ANOVA to eco-physiological QTL models. Aust J Agric Res 56:883–894

    Article  Google Scholar 

  • Viczian A, Kircher S, Fejes E, Millar AJ, Schafer E, Kozma-Bognar L, Nagy F (2005) Functional characterization of phytochrome interacting factor 3 for the Arabidopsis thaliana circadian clockwork. Plant Cell Physiol 46:1591–1602

    Article  PubMed  CAS  Google Scholar 

  • Villalobos FJ, Hall AJ, Ritchie JT, Orgaz F (1996) OILCROP-SUN: a development, growth, and yield model of the sunflower crop. Agron J 88:403–415

    Article  Google Scholar 

  • Wade MJ, Goodnight CJ (1998) Perspective: the theories of Fisher and Wright in the context of metapopulations: when nature does many small experiments. Evolution 52:1537–1553

    Article  Google Scholar 

  • Warwick SI, Black LD (1985) Genecological variation in recently established populations of Abutilon theophrasti. Can J Bot 64:1632–1643

    Article  Google Scholar 

  • Weinig C (2000a) Differing selection in alternative competitive environments: shade-avoidance responses and germination timing. Evolution 54:124–136

    CAS  Google Scholar 

  • Weinig C (2000b) Plasticity versus canalization: population differences in the timing of shade-avoidance responses. Evolution 54:441–451

    CAS  Google Scholar 

  • Weinig C (2000c) Limits to adaptive plasticity: Temperature and photoperiod influence shade-avoidance responses. Am J Bot 87(11):1660–1668

    Article  Google Scholar 

  • Weinig C, Delph LF (2001) Phenotypic plasticity early in life constrains developmental responses later. Evolution 55(5): 930–936

    Article  PubMed  CAS  Google Scholar 

  • Weinig C, Ungerer MC, Dorn LA, Halldorsdottir SS, Toyonaga Y, Mackay TFC, Purugganan MD, Schmitt J (2002) Novel loci control variation in reproductive timing in Arabidopsis thaliana in natural environments. Genetics 162:1875–1884

    PubMed  CAS  Google Scholar 

  • Weinig C, Schmitt J (2004) Environmental effects on the expression of quantitative trait loci and implications for phenotypic evolution. BioScience 54:627–635

    Article  Google Scholar 

  • Weinig C, Stinchcombe JR, Schmitt J (2003a) Evolutionary genetics of resistance and tolerance to natural herbivory in Arabidopsis thaliana. Evolution 57:1270–1280

    Google Scholar 

  • Weinig C, Dorn LA, Kane NC, Ungerer MC, Halldorsdottir SS, German ZM, Toyonaga Y, Mackay TFC, Purugganan MD, Schmitt J (2003b) Heterogeneous selection at specific loci in natural environments in Arabidopsis thaliana. Genetics 165:321–329

    CAS  Google Scholar 

  • Weinig C, Stinchcombe JR, Schmitt J (2003c) QTL architecture of resistance and tolerance traits in Arabidopsis thaliana in natural environments. Mol Ecol 12:1153–1163

    Article  CAS  Google Scholar 

  • Weinig C, Johnston J, German ZM, Demink LM (2006) Local and global costs of adaptive plasticity to density in Arabidopsis thaliana. Am Nat 167(6):826–836

    Article  Google Scholar 

  • Weinig C, Johnston JA, Willis C, Maloof JN (in review) Antagonistic multilevel selection on size, architecture, and developmental timing in experimental and feral stands of Arabidopsis thaliana. Evolution

  • Weiss A (ed) (2003) Crop modeling and genomics. Agron J 95(special issue):1–113

    Article  Google Scholar 

  • Welch SM, Wilkerson G, Whiting K, Sun N, Vagts T, Buol G, Mavromatis T (2002) Estimating soybean model genetic coefficients from private-sector variety performance trial data. Trans ASAE 45:1163–1175

    Google Scholar 

  • Welch SM, Dong Z, Roe JL, Das S (2005a) Flowering time control: gene network modelling and the link to quantitative genetics. Aust J Agric Res 56:919–936

    Article  Google Scholar 

  • Welch SM, Roe JL, Das S, Dong Z, He R, Kirkham MB (2005b) Merging genomic control networks and soil–plant–atmosphere–continuum models. Agric Syst 86:243–274

    Article  Google Scholar 

  • Williamson M (1999) Invasions. Ecography 22:5–12

    Article  Google Scholar 

  • Wilson IW, Schiff CL, Hughes DE, Somerville SC (2001) Quantitative trait loci analysis of powdery mildew disease resistance in the Arabidopsis thaliana accession Kashmir-1. Genetics 158:1301–1309

    PubMed  CAS  Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    PubMed  CAS  Google Scholar 

  • Wright S (1977) Evolution and genetics of populations. University of Chicago Press, Chicago

    Google Scholar 

  • Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2484

    Article  PubMed  CAS  Google Scholar 

  • Yanovsky M, Kay SA (2002) Molecular basis of seasonal time measurement in Arabidopsis. Nature 419:308–313

    Article  PubMed  CAS  Google Scholar 

  • Yin X, Kropff M, Stam P (1999a) The role of ecophysiological models in QTL analysis: the example of specific leaf area in barley. Heredity 82:415–421

    Article  Google Scholar 

  • Yin X, Stam P, Dourleijn C, Kropff M (1999b) AFLP mapping of quantitative trait loci for yield determining physiological characters in spring barley. Theor Appl Genet 99:244–253

    Article  CAS  Google Scholar 

  • Yin X, Struik PC, van Eeuwijk FA, Stam P, Tang J (2005) QTL analysis and QTL-based prediction of flowering phenology in recombinant inbred lines of barley. J Exp Bot 56:967–976

    Article  PubMed  CAS  Google Scholar 

  • Zhao W, Zhu J, Gallo-Meagher M, Wu R (2004) A unified statistical model for functional mapping of environment-dependent genetic expression and genotype × environment interactions for ontogenetic development. Genetics 168:1751–1762

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Earlier versions of this paper benefited from the comments of C.E. Lee, and three anonymous reviewers. The paper was invited for the 2004 Society for the Study of Evolution Symposium “All Stressed Out and Nowhere to Go: Does Evolvability Limit Adaptation in Invasive Species?” The research on Arabidopsis thaliana described here has been supported by NSF grant DBI-0227103 and USDA-AES grant MIN-71–048 to CW and, in part, by NSF grant 0425759 to SW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia Weinig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinig, C., Brock, M.T., Dechaine, J.A. et al. Resolving the genetic basis of invasiveness and predicting invasions. Genetica 129, 205–216 (2007). https://doi.org/10.1007/s10709-006-9015-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-006-9015-7

Keywords

Navigation