Skip to main content

Genetic divergence and phylogeography in the genus Nyctalus (Mammalia, Chiroptera): implications for population history of the insular bat Nyctalus azoreum

Abstract

We used three mitochondrial DNA fragments with different substitution rates (ND1, Cyt b and the CR) to infer phylogenetic relationships among six species of the genus Nyctalus, and compare levels of genetic divergence between the insular, vulnerable Nyctalus azoreum and its continental counterpart to assess the origins of the Azorean bat. The larger species found throughout the Palaearctic region (N. lasiopterus, N. aviator and N. noctula) share a unique chromosome formula (2n = 42) and form a monophyletic clade in our reconstructions. Nyctalus plancyi (= velutinus), a Chinese taxon with 2n = 36 chromosomes, is sometimes included in N. noctula, but is genetically very divergent from the latter and deserves full species status. All Cyt b and CR haplotypes of N. azoreum are closely related and only found in the Azores archipelago, but when compared to continental sequences of N. leisleri, levels of mtDNA divergence are unusually low for mammalian species. This contrasts with the high level of differentiation that N. azoreum has attained in its morphology, ecology, and echolocation calls, suggesting a recent split followed by fast evolutionary change. The molecular data suggest that N. azoreum originated from a European population of N. leisleri, and that the colonisation of the Azores occurred at the end of the Pleistocene. The Madeiran populations of N. leisleri also appear to have a European origin, whereas those of the Canary Islands probably came from North Africa. In spite of its recent origin and low genetic divergence, the Azorean bat is well differentiated and consequently represents a unique evolutionary unit with great conservation value.

This is a preview of subscription content, access via your institution.

References

  • Avise JC, Walker D (1999) Species realities and numbers in sexual vertebrates: perspectives from an asexually transmitted genome. Proc Natl Acad Sci USA 96:992–995

    PubMed  Article  CAS  Google Scholar 

  • Bandelt H, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16: 37–48

    PubMed  CAS  Google Scholar 

  • Barratt EM, Deaville R, Burland TM, Bruford MW, Jones G, Racey PA, Wayne RK (1997) DNA answers the call of pipistrelle bat species. Nature 387:138–139

    PubMed  Article  CAS  Google Scholar 

  • Beheregaray LB, Gibbs JP, Havill N, Fritts TH, Powell JR, Caccone A (2004) Giant tortoises are not so slow: rapid diversification and biogeographic consensus in the Galapagos. Proc Natl Acad Sci USA 101:6514–6519

    PubMed  Article  CAS  Google Scholar 

  • Borges PAV, Brown VK (1999) Effect of island geological age on the arthropod species richness of Azorean pastures. Biol J Linn Soc 66:373–410

    Article  Google Scholar 

  • Bradley RD, Baker RJ (2001) A test of the genetic species concept: cytochrome b sequences and mammals. J Mammal 82:960–973

    Article  Google Scholar 

  • Bunce M, Szulkin M, Lerner H, Barnes I, Shapiro B, Cooper A, Holdaway R (2005) Ancient DNA provides new insights into the evolutionary history of New Zealand’s extinct giant eagle. PLoS Biol 3:e9

    PubMed  Article  CAS  Google Scholar 

  • Castella V, Ruedi M, Excoffier L (2001) Contrasted patterns of mitochondrial and nuclear structure among nursery colonies of the bat Myotis myotis. J Evol Biol 14:708–720

    Article  Google Scholar 

  • Chiroptera Specialist Group (2000). Nyctalus azoreum. In: IUCN 2006. 2006 IUCN Red List of Threatened Species. <http://www.iucnredlist.org>. Downloaded on 01 June 2006

  • Corbet GB (1978) The mammals of the Palaearctic Region: a taxonomic review. Cornell University Press, London, 314 pp

    Google Scholar 

  • Corbet GB, Hill JE (1992) The mammals of the Indomalayan region: a systematic review. Nat. Hist. Mus. Publ. Oxford University Press, Oxford, 488 pp

  • Excoffier L, Smouse PE (1994) Using allele frequencies and geographic subdivision to reconstruct gene trees within a species: molecular variance parsimony. Genetics 136:343–359

    PubMed  CAS  Google Scholar 

  • Fumagalli L, Taberlet P, Favre L, Hausser J (1996) Origin and evolution of homologous repeated sequences in the mitochondrial DNA control region of shrews. Mol Biol Evol 13:31–46

    PubMed  CAS  Google Scholar 

  • Glor RE, Kolbe JJ, Powell R, Larson A, Losos JB (2003) Phylogenetic analysis of ecological and morphological diversification in hispaniolan trunk-ground Anoles (Anolis cybotes group). Evolution 57:2383–2397

    PubMed  Google Scholar 

  • Grant PR, Grant BR (1997) Genetics and the origin of bird species. Proc Natl Acad Sci USA 94:7768–7775

    PubMed  Article  CAS  Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1985) Dating of the human–ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 21:160–174

    Article  Google Scholar 

  • Hounsome MV (1993) Biometrics and origins of some Atlantic island birds. Bol Mus Municipal Funchal 2:107–129

    Google Scholar 

  • Imaizumi Y (1970) The handbook of Japanese land mammals. Shin-Schicho-Sha, Tokyo

    Google Scholar 

  • Juste J, Ibañez C, Muñoz J, Trujillo D, Benda P, Karatas A, Ruedi M (2004) Mitochondrial phylogeography of the long-eared bats (Plecotus) in the Mediterranean Palaearctic and Atlantic Islands. Mol Phylogenet Evol 31:1114–1126

    PubMed  Article  CAS  Google Scholar 

  • Juste J, Ibañez C, Trujillo D, Muñoz J, Ruedi M (2003) Phylogeography of barbastelle bats in the western Mediterranean and the Canary Islands. Acta Chiropt 5:165–175

    Google Scholar 

  • Kawai K, Nikaido M, Harada M, Matsumura S, Lin LK, Wu Y, Hasegawa M, Okada N (2002) Intra- and interfamily relationships of Vespertilionidae inferred by various molecular markers including SINE insertion data. J Mol Evol 55:284–301

    PubMed  Article  CAS  Google Scholar 

  • Kiefer A, Veith M (2002) A new species of long-eared bat from Europe (Chiroptera: Vespertiliondae). Myotis 39:5–16

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:11–120

    Article  Google Scholar 

  • Koopman KF (1994) Chiroptera: systematics. In: Niethammer J, Schliemann H, Starck. D (eds) Handbuch der Zoologie. de Gruyter, Berlin, pp 100–109

    Google Scholar 

  • Kvist L, Broggi J, Illera JC Koivula K (2005) Colonisation and diversification of the blue tits (Parus caeruleus teneriffae-group) in the Canary Islands. Mol Phylogenet Evol 34:501–511

    PubMed  Article  CAS  Google Scholar 

  • Le Grand G (1984) Réflexions sur le peuplement de la Macaronésie. Arquipélago 5:87–101

    Google Scholar 

  • Lin L-K, Motokawa M, Harada M (2002) Karyology of ten vespertilionid bats (Chiroptera: Vespertilionidae) from Taiwan. Zool Stud 41:347–354

    Google Scholar 

  • Macdonald DW, Barrett P (1993) Collins field guide to mammals of Britain and Europe. Collins, London, pp 312

    Google Scholar 

  • Maddison WP, Maddison DR (1992) MacClade v.3. Analysis of phylogeny and character evolution. Sinauer Associates, Sunderland

  • Maeda K (1983) Classificatory study of the Japanese Large Noctule, N. lasiopterus aviator (Thomas, 1911). Zool Mag 92:21–36

    Google Scholar 

  • Maharadatunkamsi SH, Kitchener DJ, Schmitt LH (2003) Relationships between morphology, genetics and geography in the cave fruit bat Eonycteris spelaea (Dobson, 1871) from Indonesia. Biol J Linn Soc 79:511–522

    Article  Google Scholar 

  • Mayer F, von Helversen O. (2001) Cryptic diversity in European bats. Proc R Soc Lond B Biol Sci 268:1825–1832

    Article  CAS  Google Scholar 

  • Mayr E (1942) Systematics and the origin of species. Columbia University Press, New York

    Google Scholar 

  • Mayr E, Ashlock PD (1991) Principles of systematic zoology. McGraw-Hill, New York, pp 475

    Google Scholar 

  • Miller GS (1912) Catalogue of the mammals of Western Europe (Europe exclusive of Russia) in the collection of the British Museum. Trustees of the British Museum (Natural History), London

    Google Scholar 

  • Miller SA, Dykes DD, Polesky HF (1988) A simple salting procedure for extracting DNA from human nucleated cells. Nucl Acids Res 16:215

    Google Scholar 

  • Moore NW (1975) The diurnal flight of the Azorean bat (Nyctalus azoreum) and the avifauna of the Azores. J Zool 177:483–466

    Article  Google Scholar 

  • Nikaido M, Kawai K, Cao Y, Harada M, Tomita S, Okada N, Hasegawa M (2001) Maximum likelihood analysis of the complete mitochondrial genomes of eutherians and a reevaluation of the phylogeny of bats and insectivores. J Mol Evol 53:508–516

    PubMed  Article  CAS  Google Scholar 

  • Palmeirim JM (1991) A morphometric assessment of the systematic position of the Nyctalus from Azores and Madeira (Mammalia: Chiroptera). Mammalia 55:381–388

    Article  Google Scholar 

  • Pamilo P, Nei M (1988) Relationships between gene trees and species trees. Mol Biol Evol 5:568–583

    PubMed  CAS  Google Scholar 

  • Pestano J, Brown RP, Suárez NM, Fajardo S (2003) Phylogeography of pipistrellle-like bats within the Canary Islands, based on mtDNA sequences. Mol Phylogenet Evol 26:56–63

    PubMed  Article  CAS  Google Scholar 

  • Petit E, Excoffier L, Mayer F (1999) No evidence of bottleneck in the postglacial recolonisation of Europe by the noctule bat (Nyctalus noctula). Evolution 53:1247–1258

    Article  Google Scholar 

  • Polly PD (2001) On morphological clocks and paleophylogeography: towards a timescale for Sorex hybrid zones. Genetica 112–113:339–357

    Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    PubMed  Article  CAS  Google Scholar 

  • Posada D, Crandall KA (2001) Intraspecific gene genealogies: trees grafting into networks. Trends Ecol Evol 16:37–45

    PubMed  Article  Google Scholar 

  • Queiroz AI, Alves PC, Barroso I, Beja P, Fernandes M, Freitas L, Mathias ML, Mira A, Palmeirim JM, Prieto R, Rainho A, Rodrigues L, Santos-Reis M, Sequeira M (2006) Nyctalus azoreum Morcego dos Açores. In: Cabral MJ, Almeida J, Almeida PR, Dellinger T, Ferrand de Almeida N, Oliveira ME, Palmeirim JM, Queiroz AI, Rogado L, Santos-Reis M (eds) Livro Vermelho dos Vertebrados de Portugal, 2nd edn. Instituto da Conservação da Natureza/Assírio and Alvim, Lisboa, pp 463–464

  • Rainho A, Marques JT, Palmeirim JM (2002) Os morcegos dos arquipélagos dos Açores e da Madeira: um contributo para a sua conservação. Instituto da Conservação da Natureza, Lisboa

    Google Scholar 

  • Reed DH, Frankham R (2001) How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evolution 55:1095–1103

    PubMed  CAS  Google Scholar 

  • Rodriguez F, Oliver J, Marin A, Medina J (1990) The general stochastic model of nucleotide substitutions. J Theor Biol 142:485–501

    PubMed  CAS  Google Scholar 

  • Röhl A (2004) Network: a program package for calculating phylogenetic networks, version 4.1.0.9. Fluxus Technology Ltd., Hamburg

    Google Scholar 

  • Ruedi M, Mayer F (2001) Molecular systematics of bats of the genus Myotis (Vespertilionidae) suggests deterministic ecomorphological convergences. Mol Phylogenet Evol 21:436–448

    PubMed  Article  CAS  Google Scholar 

  • Ruedi M, McCracken GF (2006) Genetics and evolution: phylogeographic analysis. In: Kunz TH, Parsons S (eds) Ecological and behavioral methods for the study of bats, 2nd edn. Johns Hopkins University Press, Boston (in press)

  • Salgueiro P, Coelho MM, Palmeirim JM, Ruedi M (2004) Mitochondrial DNA variation and population structure of the island endemic Azorean bat (Nyctalus azoreum). Mol Ecol 13:3357–3366

    PubMed  Article  CAS  Google Scholar 

  • Schmitt LH, Kitchener DJ, How RA (1995) A genetic prespective of mammalian variation and evolution in the indonesian archipelago: biogeographic correlates in the fruit bat genus Cynopterus. Evolution 49:399–412

    Article  Google Scholar 

  • Simmons NB (2005) Order Chiroptera. In: Wilson DE, Reeder DM (eds) Mammal species of the world. A taxonomic and geographic reference, 3rd edn. Smithsonian Institution Press, Washington

    Google Scholar 

  • Skiba R (1996) Nachweis einer Zwergfledermaus, Pipistrellus pipistrellus (Schreiber 1774), auf der Azorinsel Flores (Portugal). Myotis 34:81–84

    Google Scholar 

  • Skiba R. (2003) Europäische Fledermäuse. Kennzeichen, Echoortung und Detektoranwendung. Westarp Wissenschaften, Hohenwarsleben, Germany, pp 212

    Google Scholar 

  • Smith M, Patton J (1993) The diversification of South American murid rodents. Evidence from mitochondrial DNA sequence data for the akodontine tribe. Biol J Linn Soc 50:149–177

    Article  Google Scholar 

  • Soulé ME (1989) Conservation biology in the twenty-first century: summary and outlook. In: Western D, Pearl M (eds) Conservation for the twenty-first century. Oxford University Press, New York, pp 297–303

    Google Scholar 

  • Speakman JR (1995) Chiropteran nocturnality. In: Racey PA, Swift SM (eds) Ecology, evolution and behaviour of bats. Symposium 67 of the Zoological Society of London, Oxford University, Oxford, pp 187–201

  • Speakman JR, Webb PI (1993) Taxonomy, status and distribution of the Azorean bat (Nyctalus azoreum). J Zool 231:27–38

    Article  Google Scholar 

  • Spitzenberger F, Haring E, Tvrtkovic N (2002) Plecotus microdontius (Mammalia, Vespertilionidae), a new bat species from Austria. Natura Croatica 11:1–18

    Google Scholar 

  • Swofford DL (1998) PAUP*: phylogenetic analysis using parsimony and other methods, version 4.0. Sinauer Associates, Sunderland

  • Tate GH (1942) Results of the Archbold expeditions. No. 47: review of the Vespertilionine bats. Bull Am Mus Nat Hist 80:221–297

    Google Scholar 

  • Thomas O (1901) On some new African bats. Ann Mag Nat Hist 7:34

    Google Scholar 

  • Tregenza T, Bridle JR (1997) The diversity of speciation. Trends Ecol Evol 12:382–383

    Article  Google Scholar 

  • Tregenza T (2002) Divergence and reproductive isolation in the early stages of speciation. Genetica 116:291–300

    PubMed  Article  CAS  Google Scholar 

  • Volleth M (1992) Comparative analysis of the banded karyotypes of the European Nyctalus species (Vespertilionidae; Chiroptera). Charles University Press, Prague

    Google Scholar 

  • Wiens JJ (2004) What is speciation and how should we study it? Am Nat 163:914–923

    PubMed  Article  Google Scholar 

  • Zhang W (1990) A study of karyotype and C-banding pattern of Nyctalus velutinus. J Anhui Normal Univ 4:58–63

    Google Scholar 

  • Zwartjes PW (2003) Genetic variability in migratory and endemic island songbirds (genus Vireo): a comparative assessment using molecular and morphological traits. Conserv Genet 4:749–758

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to the people who helped in the field, including: Ana Cerveira, Filipe Moniz, Mafalda Frade, Filipe Canário, Mário Silva, Helder Fraga, Fernando Pereira, Margarida Leonardo, Sofia Lourenço and Sophie Vancoille. We are grateful to Maria José Pitta and André Silva from the Direcção Regional de Ambiente dos Açores for processing the permit to handle bats. We also would like to thank the samples donated by A. Rainho (I.C.N.), J. Juste, C. Ibañez, D. Trujillo (I.B.D.), and Petr Benda (N.M.P., grant 206/05/2334 from the Grant Agency of the Czech Republic). José Farni and Benoît Stadelmann provided help during the sequencing at Geneva. Anabel Perdices gave advice on the phylogenetic analysis. We would also like to thank the Muséum d’Histoire Naturelle de Genève and anonymous reviewers. This research was funded by Fundação para a Ciência e Tecnologia (project POCTI: BSE/33963/99–00), and a PhD grant to P.S. (SFRH/BD/1201/2000), co-financed by the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Salgueiro.

Appendices

Appendix 1

Table 1 List of 25 specimens of Nyctalus azoreum and 23 specimens of Nyctalus leisleri, their localities of origin and corresponding haplotypes amplified for the three genes: CR, Cyt b and ND1

Appendix 2

Table 2 List of ND1 sequences from species of the genus Nyctalus and Pipistrellus, from GenBank and the corresponding haplotypes designation in the present study

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Salgueiro, P., Ruedi, M., Coelho, M.M. et al. Genetic divergence and phylogeography in the genus Nyctalus (Mammalia, Chiroptera): implications for population history of the insular bat Nyctalus azoreum . Genetica 130, 169–181 (2007). https://doi.org/10.1007/s10709-006-9004-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-006-9004-x

Keywords

  • Azores
  • Bat
  • Colonisation
  • Mitochondrial DNA
  • Phylogeography
  • Nyctalus azoreum
  • Nyctalus leisleri