Skip to main content

Advertisement

Log in

Genetic diversity and population structure of Lamiophlomis rotata (Lamiaceae), an endemic species of Qinghai–Tibet Plateau

  • Original Research
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Lamiophlomis rotata (Lamiaceae), a perennial medicinal herb, is endemic to the Qinghai–Tibet Plateau. A total of 188 individuals from eight natural populations of L. rotata in Qinghai–Tibet Plateau (four from Tibet, two from Yunnan, and two from Qinghai) were analyzed using intersimple sequence repeats (ISSR) and randomly amplified polymorphic DNA (RAPD) techniques. Our results revealed that the level of genetic variation in L. rotata was relatively high (P = 94.85%, I = 0.440 ± 0.220, H T = 0.289 ± 0.028). Three genetic groups corresponding to the three geographic regions were detected, suggesting significant geographic structure. Our results suggest that the highly structured geographic pattern found in L. rotata might represent diverging evolutionary processes associated with the uplifting of the Qinghai–Tibet Plateau and Quaternary climatic oscillations. These findings imply that as many populations as possible should be preserved in situ for the conservation of this species. Given their genetic variability and peripheral distribution, Qinghai and Yunnan populations should be assigned priority for conservation. Optimal harvesting strategies, domestication and tissue culture of L. rotata should be developed as soon as possible to guarantee its sustainable use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An ZS, Kutzbach JE, Prell WL, Porter SC (2001) Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times. Nature 411:62–66

    Article  CAS  Google Scholar 

  • Aparicio A, Albaladejo RG, Porras M, Ceballos G (2000) Isozyme evidence for natural hybridization in Phlomis (Lamiaceae): hybrid origin of the rare P. x margaritae. Ann Bot 85:7–12

    Article  CAS  Google Scholar 

  • Batygina TB (1999) Genetic heterogeneity of seeds in terms of embryology. Russian J Plant Physiol 46:374–388

    CAS  Google Scholar 

  • Ben FN, Boussaid M (2004) Genetic diversity in wild Tunisian populations of Mentha pulegium L. (Lamiaceae). Genet Resour Crop Evol 51:309–321

    Article  Google Scholar 

  • Bossart JL, Prowell DP (1998) Genetic estimates of population structure and gene flow: limitations, lessons and new directions. Trends Ecol Evol 13:202–206

    Article  Google Scholar 

  • Chen SL, Xia T, Chen SY, Zhou YJ (2005) RAPD profiling in detecting genetic variation in endemic Coelonema (Brassicaceae) of Qinghai–Tibet Plateau of China. Biochem Genet 43:189–201

    Article  PubMed  CAS  Google Scholar 

  • Chung HG, Chung JM, Chung MG (1998) Allozyme variation in six flowering plant species characterizing Ullung Island, Korea. Jpn J Bot 73:241–247

    Google Scholar 

  • Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  • Dominguez CA, Abarca CA, Eguiarte LE, Molina FF (2005) Local genetic differentiation among populations of the mass-flowering tropical shrub Erythroxylum havanens (Erythroxylaceae). New Phytol 166:663–672

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem Bull 19:11–15

    Google Scholar 

  • Fracaro F, Zacaria J, Echeverrigaray S (2005) RAPD based genetic relationships between populations of three chemotypes of Cunila galioides Benth. Biochem Syst Ecol 33:409–417

    Article  CAS  Google Scholar 

  • Ge XJ, Zhang LB, Yuan YM, Hao G, Chiang TY (2005) Strong genetic differentiation of the East-Himalayan Megacodon stylophorus (Gentianaceae) detected by Inter-Simple Sequence Repeats (ISSR). Biodivers Conserv 14:849–861

    Article  Google Scholar 

  • Godt MJW, Walker J, Hamrick JL (2004) Allozyme diversity in Macbridea alba (Lamiaceae), an Endemic Florida Mint. J Hered 95:244–249

    Article  PubMed  CAS  Google Scholar 

  • Hamrick JL, Godt MJW (1996) Effect of life history traits on genetic diversity in plant species. Philos Trans R Soc London B Biol Sci 351:1291–1298

    Google Scholar 

  • Harris SA (1999) RAPDs in systematics—a useful methodology? In: Hollingsworth PM, Bateman RM, Gornall RJ (eds) Molecular systematics and plant evolution, Taylor and Francis, London, UK, pp. 221–228

    Google Scholar 

  • Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc London B Biol Sci 359:183–195

    Article  PubMed  CAS  Google Scholar 

  • Holsinger KE, Lewis PO (2003) Hickory: a package for analysis of population genetic data v.1.0. Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, USA

    Google Scholar 

  • Isabel N, Beaulieu J, Theriault P, Bousquet J (1999) Direct evidence for biased gene diversity estimates from dominant random amplified polymorphic DNA (RAPD) fingerprints. Mol Ecol 8:477–483

    Article  Google Scholar 

  • Jaccard P (1908) Nouvelles rescherches sur la distribution florale. Bull Soc Vaud Sci Nat 44:223–270

    Google Scholar 

  • Jiao K, Shan Y (2003) The quaternary glaciations and glacier properties in the Tanggula range. J Glaci Geocry 25:34–42

    Google Scholar 

  • Judd WS, Campbell CS, Kellog EA, Stevens PF (1999) A phylogenetic approach in plant systematics. Sinauer, Sunderland MA, USA

    Google Scholar 

  • Levin DA (1970) Developmental instability and evolution in peripheral isolates. Am Nat 104:343–353

    Article  Google Scholar 

  • Lewontin RC (1984) Detecting population differences in quantitative characters as opposed to gene frequencies. Am Nat 123:115–124

    Article  Google Scholar 

  • Li HL, Hao MA, Wang BT, Bai L (2002) Studies on the analgesic action of Tibetan Herb Lamiphlomis inhibiting pain induced by cancer. J Hebei Medi 24:146–147

    Google Scholar 

  • Li JJ, Zheng BX, Yang XJ, Xie YQ, Zhang LY, Ma ZH, Xu SY (1986) The quaternary glaciation in the Taggula range. In: Xu SY (ed) Glaciers of Xizang (Tibet). Science Press, Beijing, pp 238–242

  • Li XW (1989) The geographical distribution of Labiatae in HengDuan Mountains. Bull Bot Res 9:103–112

    Google Scholar 

  • Liu JQ, Wang YJ, Wang AL, Hideaki O, Abbott RJ (2006a) Radiation and diversification within the Ligularia–Cremanthodium–Parasenecio complex (Asteraceae) triggered by uplift of the Qinghai–Tibetan Plateau. Mol Phylogenet Evol 38:31–49

    Google Scholar 

  • Liu JQ, Gao TG, Chen ZD, Lu AM (2002) Molecular phylogeny and biogeography of the Qinghai–Tibet Plateau endemic Nannoglottis (Asteraceae). Mol Phylogenet Evol 23:307–325

    Article  PubMed  CAS  Google Scholar 

  • Liu ZM, Zhao AM, Kang XY, Zhou SL, López-Pujol J (2006b) Genetic diversity, population structure, and conservation of Sophora moorcroftiana (Fabaceae), a shrub endemic to the Tibetan Plateau. Plant Biol 8:81–92

    Google Scholar 

  • López-Pujol J, Orellana MR, Bosch M, Simon J, Blanché C (2003) Effects of habitat fragmentation on allozyme diversity and conservation status of the coastal sand dunes plant Stachys maritima (Lamiaceace) in the Iberian Peninsula. Plant Biol 5:504–512

    Article  Google Scholar 

  • Macey JR, Schulte JA, Larson A, Fang ZL, Wang YZ, Tuniyev BS, Papenfuss TJ (1998) Phylogenetic relationships of toads in the Bufo bufo species group from the eastern escarpment of the Tibetan plateau: a case of vicariance and dispersal. Mol Phylogenet Evol 9:80–87

    Article  PubMed  CAS  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:175–178

    Google Scholar 

  • Mattner J, Zawko G, Rossetto M, Krauss SL, Dixon KW, Sivasithamparam K (2002) Conservation genetics and implications for restoration of Hemigenia exilis (Lamiaceae), a serpentine endemic from Western Australia. Conserv Biol 107:37–45

    Article  Google Scholar 

  • Mayr E (1963) Animal species and evolution. Harvard University Press, Cambridge, Massachusetts

    Google Scholar 

  • Miller MP (1997) Tools for population genetic analysis. Version 1.3. Department of Biological Sciences, Northern Arizona University, Flagstaff

    Google Scholar 

  • Morden CW, Loeffler W (1999) Fragmentation and genetic differentiation among subpopulations of the endangered Hawaiian mint Haplostachys haplostachya (Lamiaceae). Mol Ecol 8:617–625

    Article  Google Scholar 

  • Moritz C (1994) Defining evolutionarily significant units for conservation. Trends Ecol Evol 9:373–375

    Article  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetics distance from a small number of individuals. Genetics 89:583–590

    Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10

    Article  Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155

    Article  PubMed  CAS  Google Scholar 

  • Olmstead RG (1990) Biological and historical factors influencing genetic diversity in the Scutellaria angustifolia complex (Labiatae). Evolution 44:54–70

    Article  Google Scholar 

  • Palombi MA, Damiano C (2002) Comparison between RAPD and ISSR molecular markers in detecting genetic variation in kiwifruit (Actinidia deliciosa A. Chev). Plant Cell Rep 20:1061–1066

    Article  CAS  Google Scholar 

  • Pang J, Wang Y, Zhong Y, Hoelzel AR, Papenfuss TJ, Zeng X, Ananjeva NB, Zhang YP (2003) A phylogeny of Chinese species in the genus Phrynocephalus (Agamidae) inferred from mitochondrial DNA sequences. Mol Phylogenet Evol 27:398–409

    Article  PubMed  CAS  Google Scholar 

  • Qian H, Ricklefs RE (1999) A comparison of the taxonomic richness of vascular plants in China and the United States. Am Nat 154:160–181

    Article  Google Scholar 

  • Qian W, Ge S, Hong DY (2001) Genetic variation within and among populations of a wild rice Oryza granulata from China detected by RAPD and ISSR markers. Theor Appl Genet 102:440–449

    Article  CAS  Google Scholar 

  • Qu YH, Ericson PG, Lei FM, Li SH (2005) Postglacial colonization of the Tibetan plateau inferred from the matrilineal genetic structure of the endemic red-necked snow finch, Pyrgilauda ruficollis. Mol Ecol 14(6):1767–1781

    Article  PubMed  Google Scholar 

  • Renau-Morata B, Nebauer SG, Sales E, Arrillaga I, Caligari P, Segura J (2005) Genetic diversity and structure of natural and managed populations of Cedrus atlantica (Pinaceae) assessed using random amplified polymorphic DNA. Am J Bot 92:875–884

    CAS  Google Scholar 

  • Richards AJ (1986) Plant breeding systems. George Allen and Unwin, London, UK

    Google Scholar 

  • Rohlf FJ (1998) NTSYSpc: numerical taxonomy and multivariate analysis system, version 2.02. Exeter Software, Setauket, NY, USA

    Google Scholar 

  • Roslin T (2001) Spatial population structure in a patchily distributed beetle. Mol Ecol 10:823–837

    Article  PubMed  CAS  Google Scholar 

  • Ryder OA (1986) Conservation and systematics: the dilemma of subspecies. Trends Ecol Evol 1:9–10

    Article  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin ver. 2.000: a software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland

    Google Scholar 

  • Shi YF, Li JJ, Li BY, Pan BT, Fang XM, Yao CD, Wang SM, Cui ZJ, Li SJ (1998) Uplift and environmental evolution of Qinghai–Xizang (Tibetan) Plateau. In: Sun H, Zheng D (eds) Formation, evolution and development of Qinghai–Xizang (Tibetan) Plateau, Guangdong Science & Technology Press. Guangzhou, pp. 73–138

    Google Scholar 

  • Souframanien J, Gopalakrishna T (2004) A comparative analysis of genetic diversity in blackgram genotypes using RAPD and ISSR markers. Theor Appl Genet 109:1687–1693

    Article  PubMed  CAS  Google Scholar 

  • Sun H (2002) Tethys retreat and Himalayas–Hengduanshan mountains uplift and their significance on the origin and development of the Himalayan elements and alpine flora. Acta Bot Yunnanica 24:273–288

    Google Scholar 

  • Van Treuren R, Bijlsma R, Van Delden W, Ouborg NJ (1991) The significance of genetic erosion in the process of extinction. I. Genetic differentiation in Salvia pratensis and Scabiosa columbaria in relation to population size. Heredity 66:181–189

    Google Scholar 

  • Vazquez JL, Gomez-Mercado F, Guerrero JLG, Rodriguez-Garcia I, Garcia-Maroto F (1999) Genetic relationships and population structure within taxa of the endemic Sideritis pusilla (Lamiaceae) assessed using RAPDs. Bot J Linn Soc 129:345–358

    Article  Google Scholar 

  • Vinceti B, Van Breuge P, Amaral1 W (2004) The practical implications of research outputs from forest genetic studies. In: Vinceti B, Amaral W, Meilleur B (eds) Challenges in managing forest genetic resources for livelihoods, International Plant Genetic Resources Institute, pp 245–267

  • Wallace LE (2002) Examining the effects of fragmentation on genetic variation in Platanthera leucophaea (Orchidaceae): inferences from allozyme and random amplified polymorphic DNA markers. Plant Spec Biol 17:37–49

    Article  Google Scholar 

  • Wang A, Yang M, Liu J (2005) Molecular phylogeny, recent radiation and evolution of gross morphology of the rhubarb genus Rheum (Polygonaceae) inferred from chloroplast DNA trnL-F sequences. Ann Bot (Lond) 96:489–498

    Article  CAS  Google Scholar 

  • Wang G (2001) Studies on the therapeutic effects of rheumatic arthritis of 72 cases using Duyiwei Pian. Chinese Tradit Med Inform J 8:72

    Google Scholar 

  • Waples RS (1991) Pacific salmon, Oncorynchus spp., and the definition of a “species” under the Endangered Species Act. Mar Fish Rev 53:11–22

    Google Scholar 

  • Wu CY (1980) Vegetation of China. Science Press, Beijing

    Google Scholar 

  • Wu CY, Li XW (1982) On the evolution and distribution in Labiatae. Acta Bot Yunnanica 4:97–118

    Google Scholar 

  • Wu CY (1987) Flora of Tibet. Vol. 5. Science Press, Beijing

    Google Scholar 

  • Wu CY, Li XW (1977) Flora of China. Vol. 65(2). Science Press, Beijing

    Google Scholar 

  • Wu SG, Yang YP, Fei Y (1995) On the flora of the alpine region in the Qinghai–Xizang (Tibet) plateau. Acta Bot Yunnanica 17:233–250

    Google Scholar 

  • Xia T, Chen SL, Chen SY, Ge XJ (2005) Genetic variation within and among populations of Rhodiola alsia (Crassulaceae) native to the Tibetan Plateau as detected by ISSR markers. Biochem Genet 43:87–101

    Article  PubMed  CAS  Google Scholar 

  • Yang ZR (2003) The effects of thymic factor D and DuYiWei treatment for MDR-TB. Chinese Clini New Med 3:52

    Google Scholar 

  • Yeh FC, Yang R, Boyle T (1997) POPGENE Version 1.32. Ag/For Molecular Biology and Biotechnology Centre, University of Alberta and Center for International Forestry Research

  • Yi JH, Yan XZ, Luo ZY, Zhong ZC (1995) Study on chemical components in root of Lamiophlomis rotata, a Tibetan medicine. Acta Pharmaceutica Sinica 30:206–210

    CAS  Google Scholar 

  • Yi JH, Zhang GL, Li BG, Chen YZ (1999) Phenylpropanoid glycosides from Lamiophlomis rotata. Phytochemistry 51:825–828

    Article  CAS  Google Scholar 

  • Yuan W, Song YC, Liang ZF (2003) Comparison of the analgesic and anti-inflammatory action of Tibetan herb Lamiphlomis from different growing area in mice. China Pharm 14:716–717

    Google Scholar 

  • Zeng Y, Chen XJ, Chen ZL (2001) Advances in studies on traditional Tibetan herb Lamiophlomis rotata. Chinese Traditional Herbal Drugs 32:1141–1143

    CAS  Google Scholar 

  • Zhang D, Fengquan L, Jianmin B, (2000) Eco-environmental effects of the Qinghai–Tibet Plateau uplift during the Quartenary in China. Environ Geol 39:1352–1358

    Article  Google Scholar 

  • Zhang FM, Kong H, Ge S (2003) Allozyme variation and population differentiation of the Aconitum delavayi complex (Ranunculaceae) in the Hengduan Mountains of China. Biochem Genet 41:47–55

    Article  PubMed  CAS  Google Scholar 

  • Zhang YJ (2004) Studies on the therapeutic effects of breast swelling of 101 cases using Duyiwei Jiaonang. Chinese Tradit Patent Med 26:15

    Google Scholar 

  • Zhang ZY, Chen YY, Li DZ (2005a) Detection of low genetic variation in a critically endangered chinese pine, Pinus squamata, using RAPD and ISSR markers. Biochem Genet 43:239–249

    Article  CAS  Google Scholar 

  • Zhang Q, Chiang TY, George M, Liu JQ, Abbott RJ (2005b). Phylogeography of the Qinghai–Tibetan Plateau endemic Juniperus przewalskii (Cupressaceae) inferred from chloroplast DNA sequence variation. Mol Ecol 14:3513–3524

    Article  CAS  Google Scholar 

  • Zheng HB, Powell CM, An ZS, Dong GR (2000) Pliocene uplift of the northern Tibet Plateau. Geology 8:715–718

    Article  Google Scholar 

  • Zhou JP (2004) Studies on the therapeutic effects of breast swelling of 86 cases using Duyiwei Jiaonang. Youjiang Med J 32:378

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Zhong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Wang, L., Geng, Y. et al. Genetic diversity and population structure of Lamiophlomis rotata (Lamiaceae), an endemic species of Qinghai–Tibet Plateau. Genetica 128, 385–394 (2006). https://doi.org/10.1007/s10709-006-7517-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-006-7517-y

Keywords

Navigation