Skip to main content
Log in

Evolutionary patterns in the antR-Cor gene in the dwarf dogwood complex (Cornus, Cornaceae)

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The evolutionary pattern of the myc-like anthocyanin regulatory gene antR-Cor was examined in the dwarf dogwood species complex (Cornus Subgenus Arctocrania) that contains two diploid species (C. canadensis and C. suecica), their putative hybrids with intermediate phenotypes, and a tetraploid derivative (C. unalaschkensis). Full-length sequences of this gene (∼4 kb) were sequenced and characterized for 47 dwarf dogwood samples representing all taxa categories from 43 sites in the Pacific Northwest. Analysis of nucleotide diversity indicated departures from neutral evolution, due most likely to local population structure. Neighbor-joining and haplotype network analyses show that sequences from the tetraploid and diploid intermediates are much more strongly diverged from C. suecica than from C. canadensis, and that the intermediate phenotypes may represent an ancestral group to C. canadensis rather than interspecific hybrids. Seven amino acid mutations that are potentially linked to myc-like anthocyanin regulatory gene function correlate with petal colors differences that characterize the divergence between two diploid species and the tetraploid species in this complex. The evidence provides a working hypothesis for testing the role of the gene in speciation and its link to the petal coloration. Sequencing and analysis of additional nuclear genes will be necessary to resolve questions about the evolution of the dwarf dogwood complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atchley WR, Wollenberg KR, Fitch WM, Terhalle W, Dress AW (2000) Correlation among amino acid sites in bHLH protein domains: an information theoretic analysis. Mol Biol Evol 17:164–178

    PubMed  CAS  Google Scholar 

  • Bain JF, Denford KE (1979) The herbaceous members of genus Cornus in NW North America. Bot Notiser 132:121–129

    CAS  Google Scholar 

  • Carroll SB (1995) Homeotic genes and the evolution of arthropods and chordates. Naturalist 376:479–485

    CAS  Google Scholar 

  • Clay SN, Hath J (1971) Cytogenetics of some species of Cornus. Cytologia 36:716–730

    Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    Article  PubMed  CAS  Google Scholar 

  • Consonni G, Viotti A, Dellaporta SL, Tonelli C (1992) cDNA nucleotide sequence of Sn, a regulatory gene in maize. Nucleic Acids Res 20:373

    Article  PubMed  CAS  Google Scholar 

  • Consonni G, Geuna F, Gavazzi G, Tonelli C (1993) Molecular homology among members of the R gene family from maize. Plant J 3:335–346

    Article  PubMed  CAS  Google Scholar 

  • Dermen H (1932) Cytological studies of Cornus. J Arnold Arboretum 13:410–417

    Google Scholar 

  • De-Vetten N, Quattrocchio F, Mol J, Koes R (1997) The an1 locus controlling flower pigmentation in Petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals. Genes Dev 11:1422–1434

    PubMed  CAS  Google Scholar 

  • Dickinson WJ (1988) On the architecture of regulatory systems: evolutionary insights and implications. BioEssays 8:204–208

    Article  PubMed  CAS  Google Scholar 

  • Doebley J (1993) Genetics, development and plant evolution. Curr Opin Genet Dev 3:865–872

    Article  PubMed  CAS  Google Scholar 

  • Doebley J, Lukens L (1998) Transcriptional regulators and the evolution of plant form. Plant Cell 10:1075–1082

    Article  PubMed  CAS  Google Scholar 

  • Fan C, Xiang Q-Y (2001) Phylogenetic relationships within Cornus L. (Cornaceae) based on 26S rDNA sequences. Am J Bot 88:1131–1138

    Article  PubMed  CAS  Google Scholar 

  • Fan C, Purugganan MD, Thomas DT, Wiegmann BM, Xiang Q-Y (2004) Heterogeneous evolution of the myc-like anthocyanin regulatory gene and its phylogenetic utility in Cornus L. (Cornaceae). Mol Phylogen Evol 33:580–594

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Felsenstein J (2004) Inferring phylogenies. Sinauer, Sunderland, MA

    Google Scholar 

  • Ferris S, Whitt G (1979) Evolution of the differential regulation of duplicate genes after polyploidization. J Mol Evol 12:367–317

    Article  Google Scholar 

  • Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    PubMed  CAS  Google Scholar 

  • Goldsbourougn AP, Tong Y, Yoder JI (1996) Lc as a non-destructive visual reporter and transposition marker gene for tomato. Plant J 9:927–933

    Article  Google Scholar 

  • Gong Z, Yamagishi E, Yamazaki M, Saito K (1999) A constitutively expressed myc-like gene involved anthocyanin biosynthesis from Perilla frutescens: molecular characterization, heterologous expression in transgenic plants and transactivation in yeast cells. Plant Mol Biol 41:33–44

    Article  PubMed  CAS  Google Scholar 

  • Goodrich J, Carpenter R, Coen ES (1992) A common gene regulates pigmentation pattern in diverse plant species. Cell 68:955–964

    Article  PubMed  CAS  Google Scholar 

  • Gunatilleke CVS, Gunatilleke AUN (1984) Some observations on the reproductive biology of three species of Cornus (Cornaceae). J Arn Arb 65:419–427

    Google Scholar 

  • Hu J, Anderson B, Wessler SR (1996) Isolation and characterization of rice R genes: evidence for distinct evolutionary paths in rice and maize. Genetics 142:1021–1031

    PubMed  CAS  Google Scholar 

  • Kellogg EA (2002) Root hairs, trichomes and the evolution of duplicate genes. Trends Plant Sci 6:550–552

    Article  Google Scholar 

  • King JL, Wilson AC (1975) Evolution at two levels in humans and chimpanzees. Science 188:107–116

    Article  PubMed  CAS  Google Scholar 

  • Levine M, Tjian R (2003) Transcription regulation and animal diversity. Nature 424:147–151

    Article  PubMed  CAS  Google Scholar 

  • Lewonton RC, Birch LC (1966) Hybridization as a source of variation for adaptation to new environments. Evolution 20:315–336

    Article  Google Scholar 

  • Lioyd AM, Walbot V, Davis RW (1992) Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and C1. Science 258:1773–1775

    Article  Google Scholar 

  • Ludwig S, Wessler SR (1990) Maize R gene family: tissue-specific helix-loop-helix proteins. Cell 62:849–852

    Article  PubMed  CAS  Google Scholar 

  • Martin C, Prescott A, Mackay S, Barlett J, Vrijlandt E (1991) Control of anthocyanin biosynthesis in flower of Antirrhinum majus. Plant J 1:37–49

    Article  PubMed  CAS  Google Scholar 

  • Mol J, Grotewold E, Koes R (1998) How genes paint flowers and seeds. Trends Plant Sci 3:212–217

    Article  Google Scholar 

  • Moore RC, Purugganan MD (2005) The evolutionary dynamics of plant duplicate genes. Curr Opin Plant Biol 8:122–128

    Article  PubMed  CAS  Google Scholar 

  • Murrell ZE (1994) Dwarf dogwoods: intermediacy and the morphological landscape. Syst Bot 19:539–556

    Article  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York, USA

    Google Scholar 

  • Palopoli MF, Patel N (1996) Neo-Darwinian developmental evolution- can we bridge the gap between pattern and process?. Curr Opin Genet Dev 6:502–508

    Article  PubMed  CAS  Google Scholar 

  • Papp B, Pál C, Hurst LD (2003) Evolution of cis-regulatory elements in duplicated genes of yeast. Trends Genet 19:417–422

    Article  PubMed  CAS  Google Scholar 

  • Purugganan MD (1998) The molecular evolution of development. BioEssays 20:700–711

    Article  PubMed  CAS  Google Scholar 

  • Purugganan MD (2000) The molecular population genetics of regulatory genes. Mol Ecol 9:1451–1461

    Article  PubMed  CAS  Google Scholar 

  • Purugganan MD, Suddith JI (1998) Molecular population genetics of the Arabidopsis CAULIFLOWER regulatory gene: nonneutral evolution and naturally occurring variation in floral homeotic function. Proc Natl Acad Sci USA 95:8130–8134

    Article  PubMed  CAS  Google Scholar 

  • Purugganan MD, Suddith JI (1999) Molecular population genetics of floral homeotic loci: departures from the equilibrium-neutral model at the APETALA3 and PISTILLATA genes of Arabidopsis thaliana. Genetics 151:839–848

    PubMed  CAS  Google Scholar 

  • Quattrocchio F, Wing JF, Leppen HTC, Mol JNM, Koes RE (1993) Regulatory genes controlling anthocyanin pigmentation are functionally conversed among plant species and have distinct sets of target genes. Plant Cell 5:1497–1512

    Article  PubMed  CAS  Google Scholar 

  • Quattrocchio F, Wing JF, Woude KVD, Mol JNM, Koes RE (1998) Analysis of bHLH and MYB domain proteins: species-specific regulatory differences are caused by divergent evolution of target anthocyanin genes. Plant J 13:475–488

    Article  PubMed  CAS  Google Scholar 

  • Radicella PD, Turks D, Chandler VL (1991) Cloning and nucleotide sequence of a cDNA encoding B-Peru, a regulatory protein of the anthocyanin pathway in maize. Plant Mol Biol 17:127–130

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1997) MADS domain proteins in plant development. Biol Chem 378:1079–1101

    Article  PubMed  CAS  Google Scholar 

  • Rozas J, Sánchez-Delbarrio JC, Messeguer X, Rozas R (2003) DNASP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  • Simpson P (2002) Evolution of development in closely related species of flies and worms. Nature Rev Genet 3:907–917

    Article  CAS  PubMed  Google Scholar 

  • Stapleton A (1992) ultraviolet radiation and plants: burning questions. Plant Cell 4:1353–1358

    Article  PubMed  Google Scholar 

  • Swofford DL (2002) PAUP: phylogenetic analysis using parsimony, version 4.0b10. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Tajima F (1989) Statistical methods for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:595–595

    Google Scholar 

  • Taylor RL, Brockman RP (1966) Chromosome numbers of some western Canadian plants. Can J Bot 44:1093–1103

    Article  Google Scholar 

  • Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III Cladogram estimation. Genetics 132:619–633

    PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Watterson G (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7:256–276

    Article  PubMed  CAS  Google Scholar 

  • Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249

    Article  PubMed  CAS  Google Scholar 

  • Wilson AC (1975) Evolutionary importance of gene regulation. Stadler Symposium vol 7. University of Missouri, Columbia, Missouri, pp 117–134

  • Wolfe KH (2001) Yesterday’s polyploids and the mystery of diploidization. Nat Rev Genet 2:333–341

    Article  PubMed  CAS  Google Scholar 

  • Xiang QY, Soltis DE, Soltis PS (1998) Phylogenetic relationships of Cornaceae and close relatives inferred from matK and rbcL sequences. Am J Bot 85:285–297

    Article  CAS  Google Scholar 

  • Xiang Q-Y(J), Thomas DT, Zhang WH, Manchester SR, Murrell Z (2006) Species level phylogeny of the Dogwood genus Cornus (Cornaceae) based on molecular and morphological evidence – implication in taxonomy and Tertiary intercontinental migration. Taxon 55:9–30

    Google Scholar 

Download references

Acknowledgments

The authors thank the following people for their help with the study: Brian Cassel for assistance with sequencing; Jingen (Jim) Qi, Christian Brochmann, Margaret Ptacek, and Jean Schulenberg for plant sample collection; Nina Gardner for DNA extraction and morphological identification; members of the Xiang lab for a variety of help and discussion; Becky Boston for using her lab space in the experiments; and, Tom Wentworth and two anonymous reviewers for critically reading the manuscript. This study is supported by Faculty Research Grants from Idaho State University and North Carolina State University and NSF grant DEB-0129069 to Q.-Y.X., and Karling Graduate Student Research Award from Botanical Society of America and Deep Gene Travel Award from Deep Gene Research Coordination Network (NSF DEB-0090227 funded to B. D. Mishler) to C.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiu-Yun (Jenny) Xiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, C., Xiang, QY.(., Remington, D.L. et al. Evolutionary patterns in the antR-Cor gene in the dwarf dogwood complex (Cornus, Cornaceae). Genetica 130, 19–34 (2007). https://doi.org/10.1007/s10709-006-0016-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-006-0016-3

Keywords

Navigation