, Volume 122, Issue 3, pp 253–260 | Cite as

Molecular characterization of the 5S ribosomal gene of the Bradysia hygida(Diptera:Sciaridae)

  • Lucinéia De fátima chasko ribeiro
  • Maria Aparecida fernandez


The rRNA genes are amongst the most extensively studied eukaryotic genes. They contain both highly conserved and rapidly evolving regions. The aim of this work was to clone and to sequence the Bradysia hygida 5S rDNA gene. A positive clone was sequenced and its 346 bp sequence was analyzed against the GenBank database. Sequence analysis revealed that the B. hygida 5S (Bh5S) rDNA gene is 120 bp long and is 87% identical to the aphid Acyrthosiphon magnoliae 5S rDNA gene. The Bh5S rDNA gene presents two unusual features: a GG pair at the 5' end of the gene sequence and the localization of the polyT signal immediately after the 3' end of the gene. In situ5S hybridization experiments revealed that the Bh5S rDNA gene is localized in the autosomal A chromosome

Bradysia hygida in situ hybridization sequence data Sciaridae 5S ribosomal gene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alonso, C. & H. D. Berendes, 1975. The location of 5S (ribosomal)RNA genes in Drosophila hydei. Chomosoma 51(4): 347-356.Google Scholar
  2. Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller & D. J. Lipman, 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res 25: 3389-3402.PubMedGoogle Scholar
  3. Artavanis-Tsakonas, S., P. Schedl, C. Tschudi, V. Pirrotta, R. Steward & W. J. Gehring, 1977. The 5S genes of Drosophila melanogaster. Cell 12(4): 1057-1067.PubMedGoogle Scholar
  4. Barzotti, R., F. Pelliccia & A. Rocchi, 1996. Heterochromatin and ribosomal genes in Asellus aquaticus (Crust. Isop. ). Chromosome Res 4: 177-181.PubMedGoogle Scholar
  5. Basso, L. R. Jr, C. Vasconcelos, A. M. Fontes, K. Hartfelder, J. A. Silva Jr, P. S. R. Coelho, N. Monesi & M. L. Pacó-Larson, 2002. The induction of DNA pu. BhC4-1 gene is a late response to the increase in 20-hydroxyecdysone titers in last instar dipteran larvae. Mech. Develop. 110: 15-26.Google Scholar
  6. Bizzaro, D., M. Mandrioli, M. Zanotti, M. Giusti & G. C. Manicardi, 2000. Chromosome analysis and molecular characterization of high repeated DNAs in the aphid Acyrthosiphom pisum (Hemiptera, Aphidia). Genetica 108 (2): 197-202.Google Scholar
  7. Blackman, R. L. & J. M. Spence, 1996. Ribosomal DNA is frequently concentrated on only one X chromosome is permanently apomitic aphids, but this does not inhibit male determination. Chromosome Res. 4: 314-320.PubMedGoogle Scholar
  8. Borges, A. R., V. P. Gaspar & M. A. Fernandez, 2000. Unequal X chromosomes in Bradysia hygida (Diptera: Scaridae) females: karyotype assembly and morphometric analyis. Genetica 108: 101-105.PubMedGoogle Scholar
  9. da Conceic ¸ão Silva, J. L. & M. A. Fernandez, 2000. Feulgen stain in heterogeneous egg samples from nonsynchronized Bradysia agida (Díptera: Sciaridae)laborotory culture. Cytologia 65: 167-171.Google Scholar
  10. Del Sal, G., G. Manoletti & C. Schneider, 1989. The CTAB-DNA precipitation method: a common mini-scale prepara-tion of template DNA from phagemida, phagemids, phages or plasmids suitable for sequencing. Biotecniques 7: 514-520.Google Scholar
  11. Fiorini, A., L. R. Basso Jr, M. L. Pacó-Larson & M. A. Fernandez, 2001. Mapping of intrinsic bent DNA sites in the upstream region of DNA pu. BhC4-1 ampli ed gene. J. Cell. Biochem. 83: 1-13.PubMedGoogle Scholar
  12. Fontes, A. M., Conacci, M. E., Monesi, N., de Almeida, J. C. & M. L. Pacó-Larson, 1999. The DNA pu. BhB10-1 gene encodes a glycine-rich protein secreted by the late stage larval salivary glands of Bradysia hygida. Gene 231: 67-75.PubMedGoogle Scholar
  13. Gambarini, A. G. & R. Meneghini, 1972. Ribosomal RNA genes in salivary gland e ovary of Rhynchosciara angelae. J. Cell. Biol. 54: 421-426.PubMedGoogle Scholar
  14. Garcia, A. D., A. M. O 'Connell & S. J. Sharp, 1987. Formation of an active transcription complex in the Drosophila melanogaster 5S RNA gene is dependent on an upstream region. Mol. Cell. Biol. 7(6): 2046-2051.Google Scholar
  15. Gaspar, V. P., A. R. Borges & M. A. Fernandez, 2002. NOR sites detected by Ag-DAPI staining of na unusual autosome chromosome of Bradysia hygida (Dipetra: Sciaridae)colo-calize wit C-band heterochromatic region. Genetica 114(1): 57-61.PubMedGoogle Scholar
  16. Gerbi, A. S. & F. D. Urnov, 1996. Di. erential DNA replication in insects, pp. 947-969 in DNA Replication in Eukaruotic Cells, edited by M. L. De Pamphilis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.Google Scholar
  17. Grau, R. & L. Bachmann, 1997. The Evolution of Intergenic Spacers of The 5S rDNA Genes in the Drosophila obscura Group: are these Sequences Suitable for Phylogenetic Analyses? Biochem. Syst. Ecol. 25: 131-139.Google Scholar
  18. Henning, W. & B. Meer, 1971. Reduced polyteny of ribossomal RNA cistrons in giant chromosomes of Drosophila hydei. Nature New Biol. 233: 70-72.PubMedGoogle Scholar
  19. Hollenberg, C. P., 1976. Proportionate representation of rDNA e Balbiani Ring DNA in polytene chromosomes of Chir-onomus tentans. Chromosoma 57: 185-197.PubMedGoogle Scholar
  20. Kawata, Y. & H. Ishikawa, 1982. Nucleotide sequence and thermal property of 5S rRNA from the elder aphid. Acyrthosiphon magnoliae. Nucl. Acids Res. 10(6): 1833-1840.PubMedGoogle Scholar
  21. Kohorn, B. D. & P. M. Rae, 1983. A component of Drosophila RNA polymerase I promoter lies within the rRNA transcription unit. Nature 304(5922): 179-181.PubMedGoogle Scholar
  22. Komiya, H., M. Hasegawa & S. Takemura, 1986. Di. erenti-ation of oocyte-and somatic-type 5S rRNAs in animals. J. Biochem. (Tokyo)100(2): 369-374.PubMedGoogle Scholar
  23. Kress, H., K. Bechler, U. Swida & S. Maletz, 2001. Evolution of 5S rRNA gene families in Drosophila. Chromosome Res. 9(5): 403-413.PubMedGoogle Scholar
  24. Laicine, E. M., M. A. R. Alves, J. C. de Almeida, E. Rizzo, W. C. Albernaz & H. Sauaia, 1984. Development of DNA pu. s e patterns of polypeptite synthensis in the salivary gland of Bradysia higida. Chromosoma 89: 280-285.PubMedGoogle Scholar
  25. Monesi, N., M. A. Fernandez, A. M. Fontes, L. R. Basso Jr, Y. Nakanishi, B. Baron, G. Buttin & M. L. Paco-Larson, 1995. Molecular characterization of an 18 kb segment of DNA pu. C4 of Bradysia hygida (Diptera, sciaridae). Chromosoma 103(10): 715-724.PubMedGoogle Scholar
  26. Monesi N., L. R. Basso Jr & M. L. Pacó-Larson, 2003. Identi-cation of regulatory regions in the DNA pu. BhC4-1 promoter. Insect Mol. Biol. 12(3): 247-254.Google Scholar
  27. Monesi, N., M. Jacobs-Lorena & M. L. Pacó-Larson, 1998. The DNA pu. gene BhC4-1 of Bradysia hygida is speci cally transcribed early prepupal salivary glands of Drosophila melanogaster. Chromosoma 10: 559-569.Google Scholar
  28. Morton, D. G. & K. U. Sprague, 1982. Silkworm 5S RNA and alanine tRNA genes share highly conserved 5 ¢. anking and coding sequences. Mol. Cell. Biol. 2: 1524-1531.PubMedGoogle Scholar
  29. Oishi, M., J. Locke & G. R. Wyatt, 1985. The ribossomal RNA genes of Locusta migratoria: copy number and evidence for underreplication in a polyploid tissue. Can. J. Biochem. Cell. Biol. 63: 1064-1070.PubMedGoogle Scholar
  30. Pacó-Larson, M. L., J. C. Almeida, J. E. Edstrom & H. Sauaia, 1992. Cloning of a developmentally ampli ed gene sequence in the DNA pu. C4 of Bradysia hygida (Diptera: Scaridae) salivary glands. Insect Biochem. Mol. Biol. 22: 4399-4446.Google Scholar
  31. Paques, F., M. L. Samson, P. Jordan & M. Wegnez, 1995. Structural evolution of the Drosophila 5S ribosomal genes. J. Mol. Evol. 41(5): 615-621.Google Scholar
  32. Park, Y. J. & A. M. Fallon, 1990. Mosquito ribossomal RNA genes: characterization of gene structure and evidence for changes un copy number during development. Insect Biochem. 20: 1-11.Google Scholar
  33. Pinkel, D., C. Landegent, C. Collind, J. Fuscoe, R. Segraves, J. Lucas & J. Gray, 1988. Fluorescence in situ hybridization with human chromosome-speci c libraries: detection of trisomy 21 and translocations of chromosome 4. Proc. Natl. Acad. Sci. 85: 9132-9138.Google Scholar
  34. Preiser, P. R. & L. F. Levinger, 1991. Drosophila 5S RNA processing requires the 1-118 base pair and additional sequence proximal to the processing site.J. Biol. Chem. 266(35): 23602-23605.PubMedGoogle Scholar
  35. Procunier, J. D. & K. D. Tartof, 1975. Genetic analysis of the 5S RNA genes in Drosophila melanogaster. Genetics 81(3): 515-523.PubMedGoogle Scholar
  36. Rubacha, A., W. Summer, L. Richter & K. Beckingham, 1984. Conserved 5 ¢. ank homologies in dipteram 5S RNA genes that would function on 'A 'form DNA. Nucl. Acids Res. 21: 8193-8207.Google Scholar
  37. Sauaia, H. & M. A. R. Alves, 1968. A description of a new species of Bradysia (Diptera, Sciaridae). Pape ´is Avulsos Zool. 22: 85-88.Google Scholar
  38. Sharp, S. J. & A. D. Garcia, 1988. Transcription of the Drosophila melanogaster 5S RNA gene requires an up-stream promoter and four intragenic sequence elements. Mol. Cell Biol. 3: 1266-1274.Google Scholar
  39. Shastry, B. S., 1996. Transcription factor IIIA (TFIIIA)in the second decade. J. Cell Sci. 109: 535-539.PubMedGoogle Scholar
  40. Sibatani, A., 1971. Difference in the proportion of DNA speci c to ribosomal RNA between adults and larvae of Drosophila melanogaster. Mol. General Genet. 114: 177-180.Google Scholar
  41. Smith, T. P., L. S. Young, L. B. Bender & H. U. Sprague, 1995. Silkworm TFIIIA requires additional class III factors for commitment to transcription complex assembly on a 5S RNA gene. Nucl. Acids Res. 23(7): 1244-1251.PubMedGoogle Scholar
  42. Spear, B. B. & J. G. Gall, 1973. Independent control of ribosomal gene replication in polytene chromosomes of Drosophila melanogaster. Proc. Natl. Acad. Sci. (USA) 7: 1359-1363.Google Scholar
  43. Szymanski, M., M. Z. Barciszewska, J. Barciszewski & V. A. Erdmann, 2000. 5S ribosomal RNA database Y2K. Nucl. Acids Res. 28: 166-167.PubMedGoogle Scholar
  44. Vicent, A., 1986. TFIIIA and homologous genes. Thenger ' proteins. Nucl. Acids Res. 14(11): 4385-4391.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Lucinéia De fátima chasko ribeiro
    • 1
  • Maria Aparecida fernandez
    • 1
  1. 1.Departamento de Biologia Celular e GenéticaUniversidade Estadual de MaringáBrasil

Personalised recommendations