Genetica

, Volume 123, Issue 1–2, pp 87–105 | Cite as

Epistasis and genotype-environment interaction for quantitative trait loci affecting flowering time in Arabidopsis thaliana

  • Thomas E. Juenger
  • Sáunak Sen
  • Kirk A. Stowe
  • Ellen L. Simms
Article

Abstract

A major goal of evolutionary biology is to understand the genetic architecture of the complex quantitative traits that may lead to adaptations in natural populations. Of particular relevance is the evaluation of the frequency and magnitude of epistasis (gene–gene and gene–environment interaction) as it plays a controversial role in models of adaptation within and among populations. Here, we explore the genetic basis of flowering time in Arabidopsis thaliana using a series of quantitative trait loci (QTL) mapping experiments with two recombinant inbred line (RIL) mapping populations [Columbia (Col) x Landsberg erecta (Ler), Ler x Cape Verde Islands (Cvi)]. We focus on the response of RILs to a series of environmental conditions including drought stress, leaf damage, and apical damage. These data were explicitly evaluated for the presence of epistasis using Bayesian based multiple-QTL genome scans. Overall, we mapped fourteen QTL affecting flowering time. We detected two significant QTL–QTL interactions and several QTL–environment interactions for flowering time in the Ler x Cvi population. QTL–environment interactions were due to environmentally induced changes in the magnitude of QTL effects and their interactions across environments – we did not detect antagonistic pleiotropy. We found no evidence for QTL interactions in the Ler x Col population. We evaluate these results in the context of several other studies of flowering time in Arabidopsis thaliana and adaptive evolution in natural populations.

Keywords

Arabidopsis thaliana epistasis flowering time gene–environment interaction non-additive gene action phenology quantitative genetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alonso-Blanco, C., El-Assal, S.E.-D., Coupland, G., Koornneef, M. 1998aAnalysis of natural allelic variation at flowering time loci in the Landsberg erecta and Cape Verde Islands ecotypes of Arabidopsis thalianaGenetics149749764Google Scholar
  2. Alonso-Blanco, C., Peeters, A.J.M., Koornneef, M., Lister, C., Dean, C., Bosch, N., Pot, J., Kuiper, M.T.R. 1998bDevelopment of an AFLP based linkage map of Ler, Col, and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line populationPlant J.14259271Google Scholar
  3. Agrawal, A.F., Brodie, E.D., Riesberg, L.H. 2001Possible consequences of genes of major effect: transient changes in the G-matrixGenetica112–1133343PubMedGoogle Scholar
  4. Barton, N.H, Turelli, M. 1989Evolutionary quantitative genetics: how little do we knowAnn. Rev. Genet.23337370PubMedGoogle Scholar
  5. Beavis, W.D., 1994. The power and deceit of QTL experiments: lessons from comparative QTL studies, pp. 255–266 in Proc. Corn and Sorghum Industry Research Conference. American Seed Trade Association, Washington DC, USA. Google Scholar
  6. Bradshaw, H.D., Otto, K.G., Frewen, B.E., Mackay, J.K., Schemske, D.W. 1998Quantitative trait loci affecting differences in floral morphology between two species of monkeyflower (Mimulus)Genetics149367382PubMedGoogle Scholar
  7. Callahan, H.S., Pigliucci, M. 2002Shade induced plasticity and its ecological significance in wild populations of Arabidopsis thalianaEcology8319651980Google Scholar
  8. Cheverud, J.M., Routman, E.J. 1995Epistasis and its contribution to genetic variance componentsGenetics13914551461PubMedGoogle Scholar
  9. Cheverud, J.M., Routman, E.J., Irschick, D.J. 1997Pleiotropic effects of individual gene loci on mandibular morphologyEvolution5120062016Google Scholar
  10. Cheverud, J.M. 2000

    Detecting epistasis among quantitative trait loci

    Wolf, J.B.Brodie, E.D.,IIIWade, M.J. eds. Epistasis and the Evolutionary ProcessOxford University PressNew York5881
    Google Scholar
  11. Clarke, J.H., Mithen, R., Brown, J.K.M., Dean, C. 1995QTL analysis of flowering time in Arabidopsis thalianaMol. Gen. Genet248278286PubMedGoogle Scholar
  12. Donohue, K. 2002Germination timing influences natural selection on life-history characters in Arabidopsis thalianaEcology8310061016CrossRefGoogle Scholar
  13. Dorn, L., Pyle, E.H., Schmitt, J. 2000Plasticity to light cues and resources in Arabidopsis thaliana: testing for adaptive value and costsEvolution5419821994PubMedGoogle Scholar
  14. El-Assal, S.E-D, Alonso-Blanco, C., Peeters, A.J.M., Raz, V., Koornneef, M. 2001A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2Nature Genetics29435440Google Scholar
  15. Falconer, D.S., Mackay, T.F.C. 1996Introduction to Quantitative Genetics4Addison Wesley LongmanHarlow, EssexGoogle Scholar
  16. Fenster, C.B., Galloway, F.F., Chao, L. 1997Epistasis and its consequences for the evolution of natural populationsTrends Ecol. Evol.12282286Google Scholar
  17. Fisher, R.A. 1930The Genetical Theory of Natural SelectionOxford University PressOxfordGoogle Scholar
  18. Fry, J.D., Nuzhdin, S.V., Pasyukova, E.G., Mackay, T.F.C. 1998QTL mapping of genotype–environment interaction for fitness in Drosophila melanogasterGenet. Research71133141Google Scholar
  19. Gurganus, M.C., Fry, J.D., Nushdin, S.V., Pasyukova, E.G., Lyman, R.F., Mackay, T.F.C. 1998Genotype–environment interaction at quantitative trait loci affecting sensory bristle number in Drosophila melanogasterGenetics14918831898PubMedGoogle Scholar
  20. Jansen, R.C., Ooijen, J.W., Stam, P., Lister, C., Dean, C. 1995Genotype-by-environment interaction in genetic mapping of multiple quantitative trait lociTheor. Appl. Genet.913337Google Scholar
  21. Johanson, U., West, J., Lister, C., Micheals, S., Amasino, R., Dean, C. 2001Molecular analysis of FRIGIDA a major determinant of natural variation in Arabidopsis flowering timeScience290344347Google Scholar
  22. Juenger, T., Purugganan, M., Mackay, T.F.C. 2000Quantitative trait loci for floral morphology in Arabidopsis thalianaGenetics15613791392PubMedGoogle Scholar
  23. Kim, S.-C., Rieseberg, L.H. 1999Genetic architecture of species differences in annual sunflowers: implications for adaptive trait introgressionGenetics153965977PubMedGoogle Scholar
  24. Koornneef, M., Alonso-Blanco, C., Peeters, A.J.M., Soppe, W. 1998Genetic control of flowering time in ArabidopsisAnn. Rev. Plant Phys. Plant Mol. Biol.49345370Google Scholar
  25. Kowalski, S.P., Lan, T.-H., Feldmann, K.A., Paterson, A.H. 1994QTL mapping of naturally-occurring variation in flowering time of Arabidopsis thalianaMol. Gen. Genet245548555PubMedGoogle Scholar
  26. Kuittinen, H., Sillanpaa, M.J., Savolainen, O. 1997Genetic basis of adaptation: flowering time in Arabidopsis thalianaTheor. Appl. Genet.95573583Google Scholar
  27. Lande, R. 1979Quantitative genetic analysis of multivariate evolution, applied to brain:body allometryEvolution33402416Google Scholar
  28. Lande, R., Arnold, S. 1983The measurement of natural selection on correlated charactersEvolution3712101226Google Scholar
  29. Lander, E.S., Botstein, D. 1989Mapping Mendelian factors underlying quantitative traits using RFLP linage mapsGenetics121185199PubMedGoogle Scholar
  30. Lander, E., Green, S., Abrahamson, P., Barlow, A., Daley, M., Lincoln, S., Newburg, L. 1987MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populationsGenomics1174181PubMedGoogle Scholar
  31. Levy, Y.Y., Dean, C. 1998Control of flowering timeCurr. Opin. Plant Biol.14954PubMedGoogle Scholar
  32. Lister, C., Dean, C. 1993Recombinant inbred lines for mapping RFPL and phenotypic markers in Arabidopsis thalianaPlant J.4745750Google Scholar
  33. Littel, R.C., Milliken, G.A., Stroup, W.W., Wolfinger, R. D. 1996SAS System for Mixed ModelsThe SAS InstituteCary, NC, USAGoogle Scholar
  34. Long, A.D., Mullaney, S.L., Reid, L.A., Fry, J.D., Langley, C.H., Mackay, T.F.C. 1995High resolution mapping of genetic factors affecting abdominal bristle number in Drosophila melanogasterGenetics13912731291PubMedGoogle Scholar
  35. Lynch, M., Walsh, B. 1998Genetics and Analysis of Quantitative TraitsSinauerSunderland, MA, USAGoogle Scholar
  36. Mackay, T.F.C. 1995The genetic basis of quantitative variation: numbers of sensory bristles in Drosophila melanogaster as a model systemTrends Genet.11464470PubMedGoogle Scholar
  37. Michaels, S.D., Amasino, R.M. 1999Flowering locus C encodes a novel MADS domain protein that acts as a repressor of floweringPlant Cell11949956CrossRefPubMedGoogle Scholar
  38. Mitchell-Olds, T., Rutledge, J.J. 1986Quantitative genetics in natural plant populations: a review of the theoryAm. Nat.127379402Google Scholar
  39. Mitchell-Olds, T. 1996Genetic constraints on life-history evolution: quantitative trait loci influencing growth and flowering in Arabidopsis thalianaEvolution50140145Google Scholar
  40. Mauricio, R., Rausher, M. D. 1997Experimental manipulation of putative selective agents provides evidence for the role of natural enemies in the evolution of plant defenseEvolution5114351441Google Scholar
  41. Mitchell-Olds, T. 1996Genetic constraints on life history evolution: quantitative-trait loci influencing growth and flowering in Arabidopsis thalianaEvolution50140145Google Scholar
  42. Napp-Zinn, K. 1985

    Arabidopsis thaliana

    Halvey, H.A. eds. Handbook of FloweringCRC PressBoca Raton, Florida, USA492503
    Google Scholar
  43. Orr, H.A., Coyne, J.A. 1992The genetics of adaptation: a reassessmentAmer. Natur.140725742Google Scholar
  44. Orr, H.A. 1998The population genetics of adaptation: the distribution of factors fixed during adaptive evolutionEvolution52935949Google Scholar
  45. Pigliucci, M., Marlow, E.T. 2001Differentiation for flowering time and phenotypic integration in Arabidopsis thaliana in response to season length and vernalizationOecologia127501508Google Scholar
  46. Routman, E. J., Cheverud, J.M. 1997Gene effects on a quantitative trait: two-locus epistatic effects measured at microsatellite markers and at estimated QTLEvolution5116541662Google Scholar
  47. Sanda, S.L., Amasino, R.M. 1996Interaction of FLC and late-flowering mutations in Arabidopsis thalianaMol. Gen. Genet.2516974PubMedGoogle Scholar
  48. Schemske, D.W., Bradshaw, H.D.,Jr. 1999Pollinator preference and the evolution of floral traits in monkeyflowers (Mimulus)Proc. Natl. Acad. Sci. USA961191011915PubMedGoogle Scholar
  49. Scheiner, S.M., Callahan, H.S. 1999Measuring natural selection on phenotypic plasticityEvolution5317041713Google Scholar
  50. Sen, S., Churchill, G. 2001A statistical framework for quantitative trait mappingGenetics159371387PubMedGoogle Scholar
  51. Shook, D.R., Johnson, T.E. 1999Quantitative trait loci affecting survival and fertility related traits in Caenorhabditis elegans show genotype–environment interactions, pleiotropy, and epistasisGenetics15312331243PubMedGoogle Scholar
  52. Stratton, D.A. 1998Reaction norm functions and QTL–environment interactions for flowering time in Arabidopsis thalianaHeredity81144155PubMedGoogle Scholar
  53. Ungerer, M.C., Halldorsdottir, S.S., Modliszewski, J.L., Mackay, T.F.C., Purugganan, M.D. 2002Quantitative trait loci for inflorescence development in Arabidopsis thalianaGenetics16011331151PubMedGoogle Scholar
  54. Via, S. 1987

    Genetic constraints on the evolution of phenotypic plasticity

    Loeschke, V. eds. Genetic Constraints on Adaptive EvolutionSpringer-VerlagBerlin4771
    Google Scholar
  55. Vieira, C., Pasyukova, E.G., Zeng, Z.-B., Hackett, B., Lyman, R.F., Mackay, T.F.C. 2000Genotype–environment interaction for quantitative trait loci affecting life span in Drosophila melanogasterGenetics154213227PubMedGoogle Scholar
  56. Wade, M. 1992

    Sewall Wright: Gene interaction in the shifting balance theory

    Futuyma, D.Antonovics, J. eds. Oxford Surveys in Evolutionary Biology, Vol. 8Oxford University PressNew York3562
    Google Scholar
  57. Wade, M.J. 2000

    Epistasis as a genetic constraint within populations and an accelerant of adaptive divergence among them

    Wolf, J.B.Brodie, E.D.Wade, M.J. eds. Epistasis and the Evolutionary ProcessOxford University PressOxford, UK213231
    Google Scholar
  58. Wade, M.J. 2001Epistasis, complex traits, and mapping genesGenetica112–1135969PubMedGoogle Scholar
  59. Weinig, C., Ungerer, M., Dorn, L., Kane, N., Toyonaga, Y., Halldorsdottir, S.S., Mackay, T.F.C., Purugganan, M.D., Schmitt, J. 2002Novel loci control variation in reproductive timing in Arabidopsis thaliana in natural environmentsGenetics16218751884PubMedGoogle Scholar
  60. Westerbergh, A., Doebley, J. 2002Morphological traits defining species differences in wild relatives of maize are controlled by multiple quantitative trait lociEvolution56273283PubMedGoogle Scholar
  61. Wolf, J.B.Brodie, E.D.Wade, M.J. eds. 2000Epistasis and the Evolutionary ProcessOxford University PressOxford, UKGoogle Scholar
  62. Zeng, Z.-B., Kao, C.-H., Basten, C. 1999Estimating the genetic architecture of quantitative traitsGenet. Research74279289Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Thomas E. Juenger
    • 1
  • Sáunak Sen
    • 2
  • Kirk A. Stowe
    • 3
  • Ellen L. Simms
    • 3
  1. 1.Section of Integrative BiologyUniversity of Texas at AustinAustinUSA
  2. 2.Department of Epidemiology and BiostatisticsUniversity of California, San FranciscoSan FranciscoUSA
  3. 3.Department of Integrative BiologyUniversity of California, BerkeleyBerkeleyUSA

Personalised recommendations