Skip to main content

Advertisement

Log in

Assessment of land-use change and its impact on the environment using GIS techniques: a case of Kolkata Municipal Corporation, West Bengal, India

  • Published:
GeoJournal Aims and scope Submit manuscript

Abstract

It is axiomatically true that urbanization in India's metropolises and large cities has been exacerbated since the beginning of the millennium, consuming the natural and semi-natural ecosystem on the outskirts of the city, resulting in a zone with a distinct climate known as urban climate. Such a climate—the result of a built-up environment is distinctly different from the natural climate as the paved surface and concrete skyscrapers not only destroy the natural ecosystem, it peculiarly induce a different kind of insolation, cooling and air drainage were lacking in green space, water bodies and open space cannot accommodate with environmental rhythm properly, resulting into the accumulation of heat, ecological derangement of subsurface soil which can easily be predicted by GIS analysis. This paper is an attempt to measure urban growth and its impact on the environment in the metropolitan city Kolkata. The use of satellite data and GIS techniques to detect urban expansion is a highly scientific strategy. Using geospatial techniques, the current study attempts to examine major urban changes in Kolkata and its surroundings from 1988 to 2021. Landsat 5 TM and Landsat 8 OLI temporal data are used to identify land-use change through unsupervised classification; Spectral Radiance Model and Split Window Algorithm method are used for identifying land surface temperature change. SRTM DEM (30 m) has been used to identify flood risk zones and several spectral indices like Normalized Difference Vegetation Index and Modified Normalized Difference Water Index are a further extension for environmental assessment. By all such suitable methods, a clearer change in an urban environment is detected within the period of 33 years (1988–2021). The result shows that the population changes, vegetation cover and built-up area, and accessibility are at a rapid rate. These changes are causing major environmental degradation in the city. The classification result indicates that appropriate land use planning and environmental monitoring are required for the long-term exploitation of these resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abudu, D., Echima, R. A., & Andogah, G. (2019). Spatial assessment of urban sprawl in Arua Municipality, Uganda. The Egyptian Journal of Remote Sensing and Space Science, 22(3), 315–322.

    Article  Google Scholar 

  • Aburas, M. M., Abdullah, S. H., Ramli, M. F., & Ash’aari, Z. H. (2015). Measuring land cover change in Seremban, Malaysia using NDVI index. Procedia Environmental Sciences30, 238–243.https://doi.org/10.1016/j.proenv.2015.10.043.

  • Ahmed, W., Staley, C., Hamilton, K. A., Beale, D. J., Sadowsky, M. J., Toze, S., & Haas, C. N. (2017). Ampliconbased taxonomic characterization of bacteria in urban and peri-urban roof-harvested rainwater stored in tanks. Science of the Total Environment, 576, 326–334

    Article  Google Scholar 

  • Akbari, H., Bretz, S., Kurn, D. M., & Hanford, J. (1997). Peak power and cooling energy savings of high-albedo roofs. Energy and Buildings25(2), 117–126.https://doi.org/10.1016/S0378-7788(96)01001-8.

  • Barati, S., Rayegani, B., Saati, M., Sharifi, A., & Nasri, M. (2011). Comparison the accuracies of different spectral indices for estimation of vegetation cover fraction in sparse vegetated areas. The Egyptian Journal of Remote Sensing and Space Science14(1), 49–56.https://doi.org/10.1016/j.ejrs.2011.06.001.

  • Bisai, D., Chatterjee, S., & Khan, A. (2014). Detection of recognizing events in lower atmospheric temperature time series (1941–2010) of Midnapore Weather Observatory, West Bengal, India. Journal of Environmental Earth Science, 4(3), 61–66.

    Google Scholar 

  • Bolund, P., & Hunhammar, S. (1999). Ecosystem services in urban areas. Ecological economics29(2), 293–301.https://doi.org/10.1016/S0921-8009(99)00013-0.

  • Campbell, J. (2010). Climate change and population movement in Pacific Island countries. Climate Change and Migration, 29–50.

  • Chakrabarti, C. (2013). A sourcebook on environment of Kolkata; Kolkata Environment Improvement Project; Kolkata Municipal Corporation.

  • Chakraborty, S. D., Kant, Y., & Mitra, D. (2015). Assessment of land surface temperature and heat fluxes over Delhi using remote sensing data. Journal of Environmental Management, 148, 143–152. https://doi.org/10.1016/j.jenvman.2013.11.034

    Article  Google Scholar 

  • Chan, F. K. S., Mitchell, G., Adekola, O., & McDonald, A. (2012). Flood risk in Asia’s urban mega-deltas: Drivers, impacts and response. Environment and Urbanization ASIA3(1), 41–61.https://doi.org/10.1177/097542531200300103.

  • Chatterjee, R. S., Fruneau, B., Rudant, J. P., Roy, P. S., Frison, P. L., Lakhera, R. C., Dadhwal, V. K., & Saha, R. (2006). Subsidence of Kolkata (Calcutta) City, India during the 1990s as observed from space by differential synthetic aperture radar interferometry (D-InSAR) technique. Remote Sensing of Environment102(1–2), 176–185.https://doi.org/10.1016/j.rse.2006.02.006.

  • Chatterjee, S., Bisai, D., & Khan, A. (2013). Detection of approximate potential trend turning points in temperature time series (1941–2010) for Asansol Weather Observation Station, West Bengal, India. Atmospheric and Climate Sciences2014. https://doi.org/10.4236/acs.2014.41009.

  • Chatterjee, R. S., Fruneau, B., Rudnat, J. P., Rpy, P. S., Frison, P. L., Lakhera, R. C., Dadhwal, V. K., & Saha, R. (2006b). Subsidence of Kolkata (Calcutta) City, India during the 1990s as observed from space by Differential Synthetic Aperture Radar Interferometry (D-InSAR) technique. Remote Sensing of Environment, 102, 176–185.

    Article  Google Scholar 

  • Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal, 14(3), 464–504.

    Article  Google Scholar 

  • Chen, X. L., Zhao, H. M., Li, P. X., & Yin, Z. Y. (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote sensing of environment104(2), 133–146.https://doi.org/10.1016/j.rse.2005.11.016

  • Choudhury, D., Das, K., & Das, A. (2019). Assessment of land use land cover changes and its impact on variations of land surface temperature in Asansol-Durgapur Development Region. The Egyptian Journal of Remote Sensing and Space Science, 22(2), 203–218. https://doi.org/10.1016/j.ejrs.2018.05.004

    Article  Google Scholar 

  • Das, T., Chakraborty, S., & Samanta, K. (2016). Urban sprawl and urban growth detection analysis: A comparative study of Kolkata municipal corporation and Haora municipal corporation. International Journal of Geomatics and Geosciences, 7(1), 82–92.

    Google Scholar 

  • Dasgupta, C. (2016). Climate change and India’s security environment. In India's national security (pp. 407–414). Routledge India.

  • Dasgupta, R. (2019). On the edge of Dhaka: The Agrarian urbanization of South Asia. Pathways for Changing Rural Landscape, 49(1–2), 287.

    Google Scholar 

  • Dear, K., Henderson, S., & Korten, A. (2002). Well-being in Australia. Social Psychiatry and Psychiatric Epidemiology, 37(11), 503–509

    Article  Google Scholar 

  • Duveiller, G., Lopez-Lozano, R., & Cescatti, A. (2015). Exploiting the multi-angularity of the MODIS temporal signal to identify spatially homogeneous vegetation cover: A demonstration for agricultural monitoring applications. Remote Sensing of Environment166, 61–77.https://doi.org/10.1016/j.rse.2015.06.001.

  • Dye, C. (2008). Health and urban living. Science319(5864), 766–769.https://doi.org/10.1126/science.1150198.

  • Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F.S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., & Snyder, P. K. (2005). Global consequences of land use. Science309(5734), 570–574. https://doi.org/10.1126/science.1111772.

  • Gallo, K. P., & Owen, T. W. (1999). Satellite-based adjustments for the urban heat island temperature bias. Journal of applied meteorology38(6), 806–813.https://doi.org/10.1175/1520-0450(1999)038<0806:SBAFTU>2.0.CO;2.

  • Gao, X. M., Wailes, E. J., & Cramer, G. L. (1996). Partial rationing and Chinese urban household food demand analysis. Journal of Comparative Economics, 22(1), 43–62.

    Article  Google Scholar 

  • Ghosh, S., Singh, P., & Kumari, M. (2014). Assessment of urban sprawl and land use change dynamics, using remote sensing technique: A study of Kolkata and surrounding periphery. WB.

    Google Scholar 

  • Gittings, T., O’Halloran, J., Kelly, T., & Giller, P. S. (2006). The contribution of open spaces to the maintenance of hoverfly (Diptera, Syrphidae) biodiversity in Irish plantation forests. Forest ecology and management237(1–3), 290–300. https://doi.org/10.1016/j.foreco.2006.09.052.

  • Godfrey, R., & Julien, M. (2005). Urbanisation and health. Clinical Medicine, 5(2), 137.

    Article  Google Scholar 

  • Government of India. (2011). District Census Handbook. Govt. of India Press.

    Google Scholar 

  • Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., & Briggs, J. M. (2008). Global change and the ecology of cities. Science319(5864), 756–760. https://doi.org/10.1126/science.1150195.

  • Grimmond, S. U. (2007). Urbanization and global environmental change: Local effects of urban warming. Geographical Journal, 173(1), 83–88.

    Article  Google Scholar 

  • Hu, Y., Ban, Y., Zhang, Q., Zhang, X., Liu, J., & Zhuang, D. (2008, June). Spatial—Temporal pattern of GIMMS NDVI and its dynamics in Mongolian Plateau. In 2008 International workshop on earth observation and remote sensing applications (pp. 1–6). IEEE.

  • Jackson, T. J., Chen, D., Cosh, M., Li, F., Anderson, M., Walthall, C., & Hunt, E. R. (2004). Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sensing of Environment, 92(4), 475–482. https://doi.org/10.1016/j.rse.2003.10.021

    Article  Google Scholar 

  • Jiang, J., & Tian, G. (2010). Analysis of the impact of land use/land cover change on land surface temperature with remote sensing. Procedia Environmental Sciences, 2, 571–575. https://doi.org/10.1016/j.proenv.2010.10.062

    Article  Google Scholar 

  • Jim, C. Y. (2001). Managing urban trees and their soil envelopes in a contiguously developed city environment. Environmental Management28(6), 819–832. https://doi.org/10.1007/s002670010264.

  • Kahn, M. E. (2006). Green cities: Urban growth and the environment (Chap. 1). Available at SSRN 933669.

  • Kalnay, E., & Cai, M. (2003). Impact of urbanization and land-use change on climate. Nature423(6939), 528–531. https://doi.org/10.1038/nature01675.

  • Kaushal, S. S., Groffman, P. M., Band, L. E., Shields, C. A., Morgan, R. P., Palmer, M. A., Belt, K. T., Swan, C. M., Findlay, S. E. G., & Fisher, G. T. (2008). Interaction between urbanization and climate variability amplifies watershed nitrate export in Maryland. Environmental science & technology42(16), 5872–5878. https://doi.org/10.1021/es800264f.

  • Khan, A., Chatterjee, S., Bisai, D., & Barman, N. K. (2014). Analysis of change point in surface temperature time series using cumulative sum chart and bootstrapping for Asansol weather observation station, West Bengal, India. American Journal of Climate Change2014. https://doi.org/10.4236/ajcc.2014.31008

  • Kiran, R., & Ramachandra, T. V. (1999). Status of Wetlands in Bangalore and its conservation aspects. ENVIS Journal of Human Settlement, 16, 2–10.

    Google Scholar 

  • Li, W., Du, Z., Ling, F., Zhou, D., Wang, H., Gui, Y., Sun, B., & Zhang, X. (2013). A comparison of land surface water mapping using the normalized difference water index from TM, ETM+ and ALI. Remote Sensing5(11), 5530–5549. https://doi.org/10.3390/rs5115530.

  • Liu, Y., Kang, C., Gao, S., Xiao, Y., & Tian, Y. (2012). Understanding intra-urban trip patterns from taxi trajectory data. Journal of Geographical Systems, 14(4), 463–483.

    Article  Google Scholar 

  • McFeeters, S. K. (1996). The use of the Normalized Difference Water index (NDWI) in the delineation of open water features. International journal of remote sensing17(7), 1425–1432. https://doi.org/10.1080/01431169608948714.

  • McKenzie, D., & Ray, I. (2009). Urban water supply in India: Status, reform options and possible lessons. Water Policy, 11, 442–460.

    Article  Google Scholar 

  • Miller, R. B., & Small, C. (2003). Cities from space: Potential applications of remote sensing in urban environmental research and policy. Environmental Science & Policy6(2), 129–137. https://doi.org/10.1016/S1462-9011(03)00002-9.

  • Mitra, C., Shepherd, J. M., & Jordan, T. (2012). On the relationship between the premonsoonal rainfall climatology and urban land cover dynamics in Kolkata city, India. International Journal of Climatology, 32(9), 1443–1454.

    Article  Google Scholar 

  • Mukherjee, S., Bebermeier, W., & Schütt, B. (2018). An overview of the impacts of land use land cover changes (1980–2014) on urban water security of Kolkata. Land, 7(3), 91.

    Article  Google Scholar 

  • Ouma, Y. O., & Tateishi, R. (2006). A water index for rapid mapping of shoreline changes of five East African Rift Valley lakes: an empirical analysis using Landsat TM and ETM+ data. International Journal of Remote Sensing27(15), 3153–3181. https://doi.org/10.1080/01431160500309934.

  • Owen, T. W. (1998). Using DMSP-OLS light frequency data to categorize urban environments associated with US climate observing stations. International Journal of Remote Sensing, 19(17), 3451–3456. https://doi.org/10.1080/014311698214127

    Article  Google Scholar 

  • Parasuram, P., Narayanan, P., Pelling, M., Solecki, W., Ramachandran, P., & Ramachandran, R. (2016). Climate change adaptation pathways in Kolkata. Journal of Extreme Events3(03), 1650021. https://doi.org/10.1142/S2345737616500214.

  • Pauchard, A., Aguayo, M., Peña, E., & Urrutia, R. (2006). Multiple effects of urbanization on the biodiversity of developing countries: The case of a fast-growing metropolitan area (Concepción, Chile). Biological conservation127(3), 272–281. https://doi.org/10.1016/j.biocon.2005.05.015.

  • Paul, M. J., & Meyer, J. L. (2001). Streams in the urban landscape. Annual review of Ecology and Systematics32(1), 333–365. https://doi.org/10.1146/annurev.ecolsys.32.081501.114040.

  • Pielke, R. A., Sr., Adegoke, J. O., Chase, T. N., Marshall, C. H., Matsui, T., & Niyogi, D. (2007). A new paradigm for assessing the role of agriculture in the climate system and in climate change. Agricultural and Forest Meteorology, 142(2–4), 234–254.

    Article  Google Scholar 

  • Pisek, J., Rautiainen, M., Nikopensius, M., & Raabe, K. (2015). Estimation of seasonal dynamics of understory NDVI in northern forests using MODIS BRDF data: Semi-empirical versus physically-based approach. Remote Sensing of Environment, 163, 42–47. https://doi.org/10.1016/j.rse.2015.03.003

    Article  Google Scholar 

  • Price, C. (2003). Quantifying the aesthetic benefits of urban forestry. Urban Forestry & Urban Greening, 1(3), 123–133. https://doi.org/10.1078/1618-8667-00013

    Article  Google Scholar 

  • Puttinaovarat, S., & Horkaew, P. (2017). Urban areas extraction from multi sensor data based on machine learning and data fusion. Pattern Recognition and Image Analysis, 27(2), 326–337. https://doi.org/10.1134/S1054661816040131

    Article  Google Scholar 

  • Quattrochi, D. A., & Luvall, J. C. (Eds.). (2004). Thermal remote sensing in land surface processing. CRC Press.

  • Rawat, J. S., Biswas, V., & Kumar, M. (2013). Changes in land use/cover using geospatial techniques: A case study of Ramnagar town area, district Nainital, Uttarakhand, India. The Egyptian Journal of Remote Sensing and Space Science, 16(1), 111–117.

    Article  Google Scholar 

  • Rokni, K., Ahmad, A., Selamat, A., & Hazini, S. (2014). Water feature extraction and change detection using multitemporal Landsat imagery. Remote sensing6(5), 4173–4189. https://doi.org/10.3390/rs6054173.

  • Saaroni, H., Ben-Dor, E., Bitan, A., & Potchter, O. (2000). Spatial distribution and microscale characteristics of the urban heat island in Tel-Aviv, Israel. Landscape and Urban Planning, 48(1–2), 1–18. https://doi.org/10.1016/S0169-2046(99)00075-4

    Article  Google Scholar 

  • Sarkar, R., & Sivaramakrishnan, L. (2015). Measurement of land surface temperature and its relation to vegetation cover: A case study of Kolkata Municipal Corporation. International Journal of Current Research, 7(12), 24820–24825.

    Google Scholar 

  • Sarp, G., & Ozcelik, M. (2017). Water body extraction and change detection using time series: A case study of Lake Burdur, Turkey. Journal of Taibah University for Science, 11(3), 381–391. https://doi.org/10.1016/j.jtusci.2016.04.005

    Article  Google Scholar 

  • Sen, D. (2013). Real-time rainfall monitoring and flood inundation forecasting for the city of Kolkata. ISH Journal of Hydraulic Engineering, 19(2), 137–144. https://doi.org/10.1080/09715010.2013.787718

    Article  Google Scholar 

  • Sharma, D. P. (2014). Politics of Urban Development in India. IOSR Journal Of Humanities And Social Science19(3).

  • Sharma, R., Newman, P., & Matan, A. (2015). Urban rail—India's great opportunity for sustainable urban development. In European transport conference.

  • Stabler, L. B., Martin, C. A., & Brazel, A. J. (2005). Microclimates in a desert city were related to land use and vegetation index. Urban forestry & urban greening3(3–4), 137–147. https://doi.org/10.1016/j.ufug.2004.11.001.

  • Tam, B. Y., Gough, W. A., & Mohsin, T. (2015). The impact of urbanization and the urban heat island effect on day to day temperature variation. Urban Climate, 12, 1–10.

    Article  Google Scholar 

  • Tan, K. C., San Lim, H., MatJafri, M. Z., & Abdullah, K. (2010). Landsat data to evaluate urban expansion and determine land use/land cover changes in Penang Island, Malaysia. Environmental Earth Sciences, 60(7), 1509–1521. https://doi.org/10.1007/s12665-009-0286-z

    Article  Google Scholar 

  • Taubenböck, H., Wegmann, M., Roth, A., Mehl, H., & Dech, S. (2009). Urbanization in India–Spatiotemporal analysis using remote sensing data. Computers, environment and urban systems33(3), 179–188. https://doi.org/10.1016/j.compenvurbsys.2008.09.003.

  • Tyrväinen, L., Mäkinen, K., & Schipperijn, J. (2007). Tools for mapping social values of urban woodlands and other green areas. Landscape and Urban Planning79(1), 5–19. https://doi.org/10.1016/j.landurbplan.2006.03.003.

  • Uudus, B., Park, K. A., Kim, K. R., Kim, J., & Ryu, J. H. (2013). Diurnal variation of NDVI from an unprecedented high-resolution geostationary ocean colour satellite. Remote Sensing Letters, 4(7), 639–647. https://doi.org/10.1080/2150704X.2013.781285

    Article  Google Scholar 

  • Wang, J., Rich, P. M., Price, K. P., & Kettle, W. D. (2004). Relations between NDVI and tree productivity in the central Great Plains. International Journal of Remote Sensing, 25(16), 3127–3138. https://doi.org/10.1080/0143116032000160499

    Article  Google Scholar 

  • Weng, Q. (2001). A remote sensing? GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China. International journal of remote sensing22(10), 1999–2014. https://doi.org/10.1080/713860788.

  • Yang, W., & Kang, J. (2005). Acoustic comfort evaluation in urban open public spaces. Applied Acoustics66(2), 211–229. https://doi.org/10.1016/j.apacoust.2004.07.011.

  • Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3), 583–594. https://doi.org/10.1016/S0034-4257(96)00067-3

    Article  Google Scholar 

  • Zheng, B., Myint, S. W., & Fan, C. (2014). Spatial configuration of anthropogenic land cover impacts on urban warming. Landscape and Urban Planning130, 104–111. https://doi.org/10.1016/j.landurbplan.2014.07.001.

Download references

Acknowledgements

The authors would like to thank NASA for the DEM, USGS for Landsat imageries without which, it is not possible to find such applicable results. The authors also pay their sincere vote of thanks to them for building up the cognitive background to carry out such work. They are seriously thankful to the UGC for encouragement as Junior Research Fellow (JRF) to carry out the novel work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mst Tania Parveen.

Ethics declarations

Conflict of interest

The authors state that they have no known conflicting financial interests or personal ties that could appear to have influenced the work disclosed in this publication, as well as no other third-party interferences to their knowledge and belief.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parveen, M.T., Ilahi, R.A. Assessment of land-use change and its impact on the environment using GIS techniques: a case of Kolkata Municipal Corporation, West Bengal, India. GeoJournal 87 (Suppl 4), 551–566 (2022). https://doi.org/10.1007/s10708-022-10581-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10708-022-10581-z

Keywords

Navigation