Advertisement

GeoJournal

pp 1–20 | Cite as

Mountains as vulnerable places: a global synthesis of changing mountain systems in the Anthropocene

  • Abhik ChakrabortyEmail author
Article

Abstract

This article provides a comprehensive review of mountains as a highly heterogeneous, dynamic, yet increasingly vulnerable terrestrial environment undergoing rapid change in the Anthropocene. Mountains are widely appreciated for their geodiversity, species richness, high endemism, and association with various essential ecosystem services and cultural sustenance. However, in many of the planet’s most imposing mountain systems, the high alpine zone was scarcely visited before the twentieth century, and those places have been rapidly transformed from obscurity into theaters of intense anthropogenic change due to economic development and expansion of human activities. It is also widely noted that mountains are at the forefront of global environmental change and will be affected disproportionately by climate change. Synthesizing from key works on mountain relief formation, geodiversity, geo-biological connectivity, and ongoing change in mountain environments, this article makes the timely and important contribution to the field by positing mountains as vulnerable places in the Anthropocene. It is argued that owing to the highly heterogeneous nature of the constituent parts of their biophysical environment, mountain systems should be analyzed through a combination of disciplines, and should be assessed from the perspective of ‘place’ in order to gain crucial insight into their unique properties and change pathways.

Keywords

Mountains Geodiversity Dynamic systems Global environmental change Anthropocene 

Notes

Acknowledgements

I am thankful to the anonymous reviewer comments and suggestions that helped make the paper better.

Compliance with ethical standards

Ethical standard

I declare that the manuscript submitted herein and the research conducted for producing it conform to all ethical standards. The manuscript is my original work, and research and writing have been conducted in strict compliance with ethical standards.

References

  1. Antonelli, A. (2015). Multiple origins of mountain life. Nature, 524(7565), 300–301.  https://doi.org/10.1038/nature14645.CrossRefGoogle Scholar
  2. Antonelli, A., Kissling, W. D., Flantua, S. G. A., Bermudez, M. A., Mulch, A., Muellner-Riehl, A. N., et al. (2018). Geological and climatic influences on mountain biodiversity. Nature Geoscience, 11(10), 718–725.  https://doi.org/10.1038/s41561-018-0236-z.CrossRefGoogle Scholar
  3. Bach, A. J., & Price, L. W. (2013). Mountain climate. In M. F. Price, A. C. Byers, D. A. Friend, T. Kohler, & L. W. Price (Eds.), Mountain geography: Physical and human dimensions (pp. 41–84). Berkeley, CA: University of California Press. ISBN 978-0-52-025431-2.Google Scholar
  4. Badgley, C. (2010). Tectonics, topography and mammalian diversity. Ecography, 33(2), 220–231.  https://doi.org/10.1111/j.1600-0587.2010.06282.x.CrossRefGoogle Scholar
  5. Bałazy, R., Zasada, M., Ciesielski, M., Waraska, P., & Zawiła-Niedźwiecki, T. (2019). Forest dieback processes in the Central European Mountains in the context of terrain topography and selected stand attributes. Forest Ecology and Management, 435, 106–119.  https://doi.org/10.1016/j.foreco.2018.12.052.CrossRefGoogle Scholar
  6. Ballantyne, C. K. (2002). Paraglacial geomorphology. Quaternary Science Reviews, 21(18–19), 1935–2017.  https://doi.org/10.1016/S0277-3791(02)00005-7.CrossRefGoogle Scholar
  7. Bates, D. G., & Lozny, L. (2013). Introduction. In L. Lozny (Ed.), Continuity and change in cultural adaptation to mountain environments: From prehistory to contemporary threats (pp. 1–8). New York: Springer. ISBN 978-1-46-145701-5.Google Scholar
  8. Bawa, K. S., Koh, L. P., Lee, T. M., Liu, J., Ramakrishnan, P. S., Yu, D. W., et al. (2010). China, India, and the environment. Science, 327(5972), 1457–1459.  https://doi.org/10.1126/science.1185164.CrossRefGoogle Scholar
  9. Bernbaum, E., & Price, L. W. (2013). Attitudes toward mountains. In M. F. Price, A. C. Byers, D. A. Friend, T. Kohler, & L. W. Price (Eds.), Mountain geography: Physical and human dimensions (pp. 253–266). Berkeley, CA: University of California Press. ISBN 978-0-52-025431-2.Google Scholar
  10. Billick, I., & Price, M. V. (Eds.). (2012). The ecology of place: Contributions of place-based research to ecological understanding. Chicago, IL: The University of Chicago Press. ISBN 978-0-22-605043-0.Google Scholar
  11. Blyth, S., Groombridge, B., Lysenko, I., Miles, L., & Newton, A. (2002). Mountain Watch. Cambridge, UK: UNEP World Conservation Monitoring Centre.Google Scholar
  12. Bracchiali, L., Najman, Y., Parrish, R. R., Akhter, S. H., & Millar, I. (2015). The Brahmaputra tale of tectonics and erosion: Early Miocene river capture in the Eastern Himalaya. Earth and Planetary Science Letters, 415, 25–37.  https://doi.org/10.1016/j.epsl.2015.01.022.CrossRefGoogle Scholar
  13. Byers, A. C., Price, L. W., & Price, M. F. (2013). Introduction to mountains. In M. F. Price, A. C. Byers, D. A. Friend, T. Kohler, & L. W. Price (Eds.), Mountain geography: Physical and human dimensions (pp. 1–10). Berkeley, CA: University of California Press. ISBN 978-0-52-025431-2.Google Scholar
  14. Caine, N. (2013). Mechanical and chemical denudation in mountain systems. In P. N. Owens & O. Slaymaker (Eds.), Mountain geomorphology (pp. 132–152). London, UK: Routledge. ISBN 978-0-34-076417-6.Google Scholar
  15. Carey, M., Molden, O. C., Rasmussen, M. B., Jackson, M., Nolin, A. W., & Mark, B. G. (2017). Impacts of glacier recession and declining meltwater on mountain societies. Annals of the American Association of Geographers, 107(2), 350–359.  https://doi.org/10.1080/24694452.2016.1243039.CrossRefGoogle Scholar
  16. Chakraborty, A., & Jones, T. E. (2018). Mount Fuji: The volcano, the heritage and the mountain. In A. Chakraborty, K. Mokudai, M. Cooper, M. Watanabe, & S. Chakraborty (Eds.), Natural heritage of Japan: Geological, geomorphological, and ecological aspects (pp. 167–176). Cham: Springer. ISBN 978-3-31-961895-1.CrossRefGoogle Scholar
  17. Champagnac, J.-D., Molnar, P., Anderson, R. S., Sue, C., & Delacou, B. (2007). Quaternary erosion-induced isostatic rebound in the western Alps. Geology, 35(3), 195–198.  https://doi.org/10.1130/G23053A.1.CrossRefGoogle Scholar
  18. Champagnac, J.-D., Valla, P. G., & Herman, F. (2014). Late-Cenozoic relief evolution under evolving climate: A review. Technophysics, 614, 44–65.  https://doi.org/10.1016/j.tecto.2013.11.037.CrossRefGoogle Scholar
  19. Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333(6045), 1024–1026.  https://doi.org/10.1126/science.1206432.CrossRefGoogle Scholar
  20. Chen, Y., Li, W., Deng, H., Fang, G., & Li, Z. (2016). Changes in Asia’s water tower: Past, present and future. Nature Scientific Reports.  https://doi.org/10.1038/srep35458.CrossRefGoogle Scholar
  21. Condie, K. C. (2016). The earth as an evolving planetary system. London: Academic Press (Elsevier). ISBN 978-0-12-803689-1.Google Scholar
  22. Cooper, A. H., Brown, T. J., Price, S. J., Ford, J. R., & Waters, C. N. (2018). Humans are the most significant global geomorphological driving force of the 21st century. The Anthropocene Review (3). https://journals.sagepub.com/doi/pdf/10.1177/2053019618800234. Accessed November 22, 2018.
  23. Cooper, L. A., Reed, C. C., & Ballantyne, A. P. (2018b). Mountain pine beetle attack faster growing lodgepole pine at low elevations in western Montana, USA. Forest Ecology and Management, 427, 200–207.  https://doi.org/10.1016/j.foreco.2018.05.048.CrossRefGoogle Scholar
  24. Cordes, K. (2014). The tower: A chronicle of climbing and controversy on Cerro Torre. Ventura, CA: Patagonia. ISBN 978-1-93-834033-8.Google Scholar
  25. Cortés, A. J., & Wheeler, J. A. (2018). The environmental heterogeneity of mountains at a fine scale in a changing world. In C. Hoorn, A. Perrigo, & A. Antonelli (Eds.), Mountains, climate and biodiversity (pp. 187–199). Oxford, UK: Wiley Blackwell. ISBN 978-1-11-915987-2.Google Scholar
  26. Crutzen, P. (2002). Geology of mankind. Nature, 415(23).  https://doi.org/10.1038/415023a.CrossRefGoogle Scholar
  27. Crutzen, P., & Stoermer, E. F. (2000). The ‘Anthropocene’. IGBP Newsletter, 41, 1–18.Google Scholar
  28. Davies, W. (2012). Into the silence: The great war, Mallory, and the conquest of everest. New York, NY: Random House. ISBN 978-0-09-956383-9.Google Scholar
  29. Davies, J. (2016). The birth of the Anthropocene. Oakland, CA: University of California Press. ISBN 978-0-52-028997-0.Google Scholar
  30. Debarbieux, B., & Rudaz, G. (2015). The mountain: A political history from the enlightenment to the present (French voices) (trans: Todd, J. M.). Chicago, IL: University of Chicago Press.Google Scholar
  31. Decker, R., & Decker, B. (2006). Volcanoes. New York: W.H. Freeman. ISBN 978-0-71-678929-1.Google Scholar
  32. Ding, L., Spicer, R. A., Yang, J., Xu, Q., Cai, F., Li, S., et al. (2017). Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology, 45(3), 215–218.  https://doi.org/10.1130/G38583.1.CrossRefGoogle Scholar
  33. Dirzo, R., Young, H. S., Galetti, M., Ceballos, G., Isaac, N. J. B., & Collen, B. (2014). Defaunation in the Anthropocene. Science, 345(6195), 401–406.  https://doi.org/10.1126/science.1251817.CrossRefGoogle Scholar
  34. Eiser, J. J. (2011). A world awash with nitrogen. Science, 334(6062), 1504–1505.  https://doi.org/10.1126/science.1215567.CrossRefGoogle Scholar
  35. Emmett, R., & Lekan, T. (Eds.) (2016). Whose Anthropocene? Revisiting Dipesh Chakrabarty’s “Four Theses”. Environmental Society Portal. http://www.environmentandsociety.org/perspectives/2016/2/whose-anthropocene-revisiting-dipesh-chakrabartys-four-theses. Accessed November 22, 2018.
  36. Fauquette, S., Suc, J. P., Medail, F., Muller, S. D., Jimenez-Moreno, G., Bertini, A., et al. (2018). The Alps: A geological, climatic and human perspective on vegetation history and modern plant diversity. In C. Hoorn, A. Perrigo, & A. Antonelli (Eds.), Mountains, climate and biodiversity (pp. 413–428). Oxford, UK: Wiley Blackwell. ISBN 978-1-11-915987-2.Google Scholar
  37. Feurdean, A., Florescu, G., Vannière, B., Tanţău, I., O’Hara, R. B., Pfeiffer, M., et al. (2017). Fire has been an important driver of forest dynamics in the Carpathian Mountains during the Holocene. Forest Ecology and Management, 389, 15–26.  https://doi.org/10.1016/j.foreco.2016.11.046.CrossRefGoogle Scholar
  38. Finer, M., & Jenkins, C. N. (2012). Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLoS ONE, 7(4), e0035126.  https://doi.org/10.1371/journal.pone.0035126.CrossRefGoogle Scholar
  39. Finnegan, N. J., Hallet, B., Montgomery, D. R., Zeitler, P. K., Stone, J. O., Anders, A. M., et al. (2008). Coupling of rock uplift and river incision in the Namche Barwa Gyala Peri Massif, Tibet. GSA Bulletin, 120(1–2), 142–155.  https://doi.org/10.1130/B26224.1.CrossRefGoogle Scholar
  40. Flatley, W. T., Lafon, C. W., Grissino-Mayer, H. D., & LaForest, L. B. (2015). Changing fire regimes and old-growth forest succession along a topographic gradient in the Great Smoky Mountains. Forest Ecology and Management, 350, 96–106.  https://doi.org/10.1016/j.foreco.2015.04.024.CrossRefGoogle Scholar
  41. Fuller, C. W., Willett, S. D., Hovius, N., & Slingerland, R. (2003). Erosion rates for Taiwan mountain basins: New determinations from suspended sediment records and a stochastic model of their temporal variation. The Journal of Geology, 111(1), 71–87.  https://doi.org/10.1086/344665.CrossRefGoogle Scholar
  42. Galop, D., Rius, D., Cugny, C., & Mazier, F. (2013). A history of long-term human-environment interactions in the French Pyrenees inferred from the pollen data. In L. Lozny (Ed.), Continuity and change in cultural adaptation to mountain environments: From prehistory to contemporary threats (pp. 19–30). New York: Springer. ISBN 978-1-46-145701-5.CrossRefGoogle Scholar
  43. Garbarino, M., Lingua, E., Marzano, R., Urbinati, C., Bhuju, D., & Carrer, M. (2014). Human interactions with forest landscape in the Khumbu valley, Nepal. Anthropocene, 6, 39–47.  https://doi.org/10.1016/j.ancene.2014.05.004.CrossRefGoogle Scholar
  44. Gardner, J. S., Rhoades, R. E., & Stadel, C. (2013). People in the mountains. In M. F. Price, A. C. Byers, D. A. Friend, T. Kohler, & L. W. Price (Eds.), Mountain geography: Physical and human dimensions (pp. 301–332). Berkeley, CA: University of California Press. ISBN 978-0-52-025431-2.Google Scholar
  45. Glotzbach, C., Van der Beek, P. A., Carcaillet, J., & Delunel, R. (2013). Deciphering the driving forces of erosion rates on millennial to million-year timescales in glacially impacted landscapes: An example from the western Alps. Journal of Geophysical Research Earth Surface, 118, 1491–1515.  https://doi.org/10.1002/jgrf.20107.CrossRefGoogle Scholar
  46. Godde, P. M., Price, M. F., & Zimmermann, F. M. (Eds.). (2000). Tourism and development in mountain regions. New York: CABI. ISBN 0-85199-391-5.Google Scholar
  47. Gomez, J. M., Gonzalez-Megias, A., Lorite, J., Abdelaziz, M., & Perfectti, F. (2015). The silent extinction: Climate change and the potential hybridization-mediated extinction of endemic high-mountain plants. Biodiversity and Conservation, 24(8), 1843–1857.  https://doi.org/10.1007/s10531-015-0909-5.CrossRefGoogle Scholar
  48. Gordon, J. E. (2018). Mountain geodiversity: Characteristics, values and climate change. In C. Hoorn, A. Perrigo, & A. Antonelli (Eds.), Mountains, climate and biodiversity (pp. 137–154). Oxford, UK: Wiley Blackwell. ISBN 978-1-11-915987-2.Google Scholar
  49. Goudie, A. S., & Viles, H. A. (2016). Geomorphology in the Anthropocene. Cambridge, UK: Cambridge University Press. ISBN 978-1-10-713996-1.CrossRefGoogle Scholar
  50. Gray, M. (2013). Geodiversity: Valuing and conserving abiotic nature. Chichester: Wiley-Blackwell. ISBN 978-0-47-074215-0.Google Scholar
  51. Grover, V. (2014). Introduction and road map for global changes on high mountains. In V. I. Grover, A. Borsdorf, J. H. Breutse, P. C. Tiwari, & F. W. Frangetto (Eds.), Impact of global changes on mountains: Responses and adaptation (pp. 15–32). New York: CRC Press. ISBN 978-1-48-220890-0.CrossRefGoogle Scholar
  52. Grumbine, R. E., & Pandit, M. K. (2013). Threats from India’s Himalaya dams. Science, 339(6115), 36–37.  https://doi.org/10.1126/science.1227211.CrossRefGoogle Scholar
  53. Guns, M., & Vanacker, V. (2014). Shifts in landslide frequency–area distribution after forest conversion in the tropical Andes. Anthropocene, 6, 75–85.  https://doi.org/10.1016/j.ancene.2014.08.001.CrossRefGoogle Scholar
  54. Hajdukiewicz, H., Wyżga, B., & Zawiejska, J. (2017). Twentieth-century hydromorphological degradation of Polish Carpathian rivers. Quaternary International.  https://doi.org/10.1016/j.quaint.2017.12.011.CrossRefGoogle Scholar
  55. Hamilton, C. (2016). The Anthropocene as rupture. The Anthropocene Review, 3, 93–106.  https://doi.org/10.1177/2053019616634741.CrossRefGoogle Scholar
  56. Hewitt, K. (2005). The Karakoram Anomaly? Glacier expansion and the ‘elevation effect’, Karakoram Himalaya. Mountain Research and Development, 25(4), 332–340.  https://doi.org/10.1659/0276-4741(2005)025%5b0332:TKAGEA%5d2.0.CO;2.CrossRefGoogle Scholar
  57. Hoorn, C., Mosbrugger, V., Mulch, A., & Antonelli, A. (2013). Biodiversity from mountain building. Nature Geoscience, 6(3), 154.  https://doi.org/10.1038/ngeo1742.CrossRefGoogle Scholar
  58. Hoorn, C., Perrigo, A., & Antonelli, A. (2018). Mountains, climate and biodiversity: An introduction. In C. Hoorn, A. Perrigo, & A. Antonelli (Eds.), Mountains, climate and biodiversity (pp. 1–14). Oxford, UK: Wiley Blackwell. ISBN 978-1-11-915987-2.Google Scholar
  59. Hoorn, C., Wesselingh, E. P., Ter Steege, H., Bermudez, M. A., Mora, A., Sevink, J., et al. (2010). Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science, 330(6006), 927–931.  https://doi.org/10.1126/science.1194585.CrossRefGoogle Scholar
  60. Houze, R. A., Jr. (2012). Orographic effects on precipitating clouds. Reviews of Geophysics, 50, 1–47.  https://doi.org/10.1029/2011RG000365.CrossRefGoogle Scholar
  61. Hovius, N., Lague, D., & Dadson, S. (2013). Processes, rates and patterns of mountain belt erosion. In P. N. Owens & O. Slaymaker (Eds.), Mountain geomorphology (pp. 109–131). London: Routledge. ISBN 978-0-34-076417-6.Google Scholar
  62. Huddleston, B., Ataman, E., De Salvo, P., Zanetti, M., Bloise, M., Bel, J., et al. (2003). Towards a GIS-based analysis of mountain environments and populations. Rome: FAO.Google Scholar
  63. International Rivers. (2008). Mountains of concrete: Dam building in the Himalayas. https://www.internationalrivers.org/sites/default/files/attached-files/ir_himalayas.pdf. Accessed November 11, 2018.
  64. Ives, J. D. (2014). Prelude: Mountains in an uncertain world. In V. I. Grover, A. Borsdorf, J. H. Breutse, P. C. Tiwari, & F. W. Frangetto (Eds.), Impact of global changes on mountains: Responses and adaptation (pp. 3–14). New York: CRC Press. ISBN 978-1-48-220890-0.Google Scholar
  65. Kodas, M. (2008). High crimes: The fate of Everest in an age of greed. New York: Hyperion. ISBN 978-1-40-130984-8.Google Scholar
  66. Kolbert, E. (2014). The sixth mass extinction: An unnatural history. London: Bloomsbury. ISBN 978-1-40-885124-1.Google Scholar
  67. Körner, C. (2004). Mountain biodiversity: Its causes and function. Ambio Supplement, Special Report Number 13, 11–17.Google Scholar
  68. Körner, C., Jetz, W., Paulsen, J., Payne, D., Rudmann-Maurer, K., & Spehn, E. M. (2017). A global inventory of mountains for bio-geographical applications. Alpine Botany., 127(1), 1–15.  https://doi.org/10.1007/s00035-016-0182-6.CrossRefGoogle Scholar
  69. Krakauer, J. (2011). Into thin air: A personal account of the everest disaster. London: Pan Books. ISBN 978-1-44-720018-5.Google Scholar
  70. Kudo, G., & Hirao, A. (2006). Habitat-specific responses in the flowering phenology and seed set of alpine plants to climate variation: Implications for global-change impacts. Population Ecology, 48(1), 49–58.  https://doi.org/10.1007/s10144-005-0242-z.CrossRefGoogle Scholar
  71. Lang, K. A., & Huntington, K. W. (2014). Antecedence of the Yarlung–Siang–Brahmaputra River, eastern Himalaya. Earth and Planetary Science Letters, 397, 145–158.  https://doi.org/10.1016/j.epsl.2014.04.026.CrossRefGoogle Scholar
  72. Logan, J. (2011). Aconcagua: The invention of mountaineering on America’s Highest Peak. Tucson, AR: University of Arizona Press.Google Scholar
  73. Lozny, L. (Ed.). (2013). Continuity and change in cultural adaptation to mountain environments: From prehistory to contemporary threats. New York: Springer. ISBN 978-1-46-145701-5.Google Scholar
  74. Luce, C. H. (2018). Effects of climate change on snowpack, glaciers, and water resources in the Northern Rockies. In J. E. Halofsky & D. L. Peterson (Eds.), Climate change and rocky mountain ecosystems (pp. 25–36). Cham: Springer. ISBN 978-3-31-956927-7.CrossRefGoogle Scholar
  75. Luce, C. H., Lopez-Burgos, V., & Holden, Z. (2014). Sensitivity of snowpack storage to precipitation and temperature using spatial and temporal analog models. Water Resources Research, 50(12), 9447–9462.  https://doi.org/10.1002/2013WR014844.CrossRefGoogle Scholar
  76. Macfarlane, R. (2017). Mountains of the mind: A history of a fascination. London: Granta. ISBN 978-1-78-378450-9.Google Scholar
  77. Meybeck, M., Green, P., & Vörösmarty, C. (2001). A new typology for mountains and other relief classes: An application to global continental water resources and population distribution. Mountain Research and Development, 21(1), 34–45.  https://doi.org/10.1659/0276-4741(2001)021%5b0034:ANTFMA%5d2.0.CO;2.2003.CrossRefGoogle Scholar
  78. Mietkiewicz, N., Kulakowski, D., Rogan, J., & Bebi, P. (2017). Long-term change in sub-alpine forest cover, tree line and species composition in the Swiss Alps. Journal of Vegetation Science, 28(5), 951–964.  https://doi.org/10.1111/jvs.12561.CrossRefGoogle Scholar
  79. Molnar, P. (2018). Simple concepts underlying the structure, support and growth of mountain ranges, high plateaus and other high terrain. In C. Hoorn, A. Perrigo, & A. Antonelli (Eds.), Mountains, climate and biodiversity (pp. 17–36). Oxford, UK: Wiley Blackwell. ISBN 978-1-11-915987-2.Google Scholar
  80. Molnar, P., & England, P. (1990). Late Cenozoic uplift of mountain ranges and global climate change: Chicken or egg? Nature, 346(6279), 29–34.  https://doi.org/10.1038/346029a0.CrossRefGoogle Scholar
  81. Momohara, A. (2018). Influence of mountain formation on floral diversification in Japan, based on macrofossil evidence. In C. Hoorn, A. Perrigo, & A. Antonelli (Eds.), Mountains, climate and biodiversity (pp. 459–474). Oxford, UK: Wiley Blackwell. ISBN 978-1-11-915987-2.Google Scholar
  82. Nature Editorial. (2007). Reassess dam building in the Amazon. Nature, 546(7658), 328.  https://doi.org/10.1038/546328a.CrossRefGoogle Scholar
  83. Norton, K. P., Abbuhl, L. M., & Schlunegger, F. (2010). Glacial conditioning as an erosional driving force in the Central Alps. Geology, 38(7), 655–658.  https://doi.org/10.1130/G31102.1.CrossRefGoogle Scholar
  84. Ortner, S. B. (2001). Life and Death on Mt. Everest: Sherpas and Himalayan Mountaineering. Princeton, NJ: Princeton University Press.Google Scholar
  85. Owen, L. A. (2013). Cenozoic evolution of global mountain systems. In P. N. Owens & O. Slaymaker (Eds.), Mountain Geomorphology (pp. 33–58). London: Routledge. ISBN 978-0-34-076417-6.Google Scholar
  86. Pandit, M. K. (2017). Life in the Himalaya: An ecosystem at risk. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
  87. Parish, R. (2002). Mountain environments. New York: Prentice Hall. ISBN 978-0-58-241911-7.Google Scholar
  88. Pauli, H., Gottfried, M., Dullinger, S., Abdaladze, O., Akhalkatsi, M., Benito Alonso, J.-L., et al. (2012). Recent plant diversity changes on Europe’s mountain summits. Science, 336(6079), 353–355.  https://doi.org/10.1126/science.1219033.CrossRefGoogle Scholar
  89. Pierce, D. W., Barnett, T. P., Hidalgo, H. G., Das, T., Bonfils, C., Santer, B. D., et al. (2008). Attribution of declining Western US snowpack to human effects. Journal of Climate, 21(23), 372–384.  https://doi.org/10.1175/2008JCLI2405.1.CrossRefGoogle Scholar
  90. Price, M. F. (2007). Integrated approaches to research and management in mountain areas: An introduction. In M. F. Price (Ed.), Mountain area research and management: Integrated approaches (pp. 1–23). London: Earthscan. ISBN 978-1-13-800202-9.Google Scholar
  91. Price, M. F., & Kohler, T. (2013). Sustainable mountain development. In M. F. Price, A. C. Byers, D. A. Friend, T. Kohler, & L. W. Price (Eds.), Mountain geography: Physical and human dimensions (pp. 333–366). Berkeley, CA: University of California Press. ISBN 978-0-52-025431-2.Google Scholar
  92. Redman, C. L., Grove, J. M., & Kuby, L. H. (2004). Integrating social science into the longterm ecological research (LTER) network: Social dimensions of ecological change and ecological dimensions of social change. Ecosystems, 7(2), 161–171.  https://doi.org/10.1007/s10021-003-0215-z.CrossRefGoogle Scholar
  93. Rinaldi, M., Wyżga, B., Dufour, S., Bertoldi, W., & Gurnell, A. (2013). River processes and implications for fluvial ecogeomorphology: A European perspective. In J. Shroder, D. Butler, & C. R. Hupp (Eds.), Treatise on geomorphology, ecogeomorphology (pp. 37–52). San Diego, CA: Academic Press.CrossRefGoogle Scholar
  94. Scherler, D., Bookhagen, B., & Strecker, M. R. (2011). Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geoscience, 4(3), 156–159.  https://doi.org/10.1038/ngeo1068.CrossRefGoogle Scholar
  95. Scherrer, D., & Körner, C. (2011). Topographically controlled thermal habitat differentiation buffers alpine plant diversity against climate warming. Journal of Biogeography, 38(2), 406–416.  https://doi.org/10.1111/j.1365-2699.2010.02407.x.CrossRefGoogle Scholar
  96. Schmeller, D. S., Loyau, A., Bao, K., Brack, W., Chatzinotas, A., Vleeschouwer, F. D., et al. (2018). People, pollution and pathogens: Global change impacts in mountain freshwater ecosystems. Science of the Total Environment, 622–623, 756–763.  https://doi.org/10.1016/j.scitotenv.2017.12.006.CrossRefGoogle Scholar
  97. Sedlack, J., Bossdorf, O., Cortés, A. J., Wheeler, J. A., & Kleunen, M. V. (2014). What role do plant-soil interactions play in the habitats suitability and potential range expansion of the alpine dwarf shrub Salix herbacea?. Basic and Applied Ecology, 15(4), 305–315.  https://doi.org/10.1016/j.baae.2014.05.006.CrossRefGoogle Scholar
  98. Shroder, J. F., Jr., Owen, L. A., Seong, Y. B., Bishop, M. P., Bush, A., Caffee, M. W., et al. (2011). The role of mass movements on landscape evolution in the Central Karakoram: Discussion and speculation. Quaternary International, 236(1–2), 34–47.  https://doi.org/10.1016/j.quaint.2010.05.024.CrossRefGoogle Scholar
  99. Shroder, J. F., & Price, L. W. (2013). Origins of mountains. In M. F. Price (Ed.), Mountain area research and management: Integrated approaches (pp. 11–40). London: Earthscan. ISBN 978-1-13-800202-9.Google Scholar
  100. Sidle, R. C., & Burt, T. P. (2009). Temperate forests and rangelands. In O. Slaymaker, T. Spencer, & C. Embleton-Hamman (Eds.), Geomorphology and global environmental change (pp. 321–343). Cambridge, UK: Cambridge University Press. ISBN 978-0-52-129100-2.CrossRefGoogle Scholar
  101. Sidle, R. C., Furuichi, T., & Kono, Y. (2011). Unprecedented rates of landslide along a newly constructed road in Yunnan, China. Natural Hazards, 57(2), 313–326.  https://doi.org/10.1007/s11069-010-9614-6.CrossRefGoogle Scholar
  102. Simoni, A., Ponza, A., Picotti, V., Berti, M., & Dinelli, E. (2013). Earthflow sediment production and Holocene sediment record in a large Apennine catchment. Geomorphology, 188, 42–43.  https://doi.org/10.1016/j.geomorph.2012.12.006.CrossRefGoogle Scholar
  103. Simpson, T. (2018). Modern mountains from the enlightenment to the Anthropocene. The Historical Journal, 62(2), 553–581.CrossRefGoogle Scholar
  104. Singh, S. J., & Haberl, H. (2011). Long term socio-ecological research (LTSER) across temporal and spatial scales. GLP News, (7), 15–16.Google Scholar
  105. Singh, S. J., Haberl, H., Chertow, M., Mirtl, M., Schmidt, M. Introduction, Singh, In S. J., et al. (Eds.). (2013). Long term socio-ecological research (pp. 1–28). Dordrecht: Springer. ISBN 978-9-40-071176-1.CrossRefGoogle Scholar
  106. Smith, B. D., & Zeder, M. A. (2013). The onset of the Anthropocene. Anthropocene, 4, 8–13.  https://doi.org/10.1016/j.ancene.2013.05.001.CrossRefGoogle Scholar
  107. Sokol, E. R., Herbold, C. W., Lee, C. K., Cary, S. C., & Barrett, J. E. (2013). Local and regional influences over soil microbial metacommunities in the Transantarctic Mountains. Ecosphere, 4(11), 136.  https://doi.org/10.1890/ES13-00136.1.CrossRefGoogle Scholar
  108. Spehn, E., Liberman, M., & Körner, C. (Eds.). (2006). Land use change and mountain biodiversity. Boca Raton, FL: CRC Press. ISBN 978-0-84-933523-5.Google Scholar
  109. Spicer, R. A. (2017). Tibet, the Himalaya, Asian monsoons and biodiversity—In what ways are they related? Plant Diversity., 39(5), 233–244.  https://doi.org/10.1016/j.pld.2017.09.001.CrossRefGoogle Scholar
  110. Spoon, J. (2013). From yaks to tourists: Sherpa livelihood adaptation in Sagaramatha (Mount Everest) National Park and Buffer Zone, Nepal. In L. Lozny (Ed.), Continuity and change in cultural adaptation to mountain environments: From prehistory to contemporary threats (pp. 319–340). New York: Springer. ISBN 978-1-46-145701-5.CrossRefGoogle Scholar
  111. Stahr, A., & Langenscheidt, E. (2014). Landforms of high mountains. Berlin: Springer. ISBN 978-3-64-253714-1.Google Scholar
  112. Stanton, M. L., & Galen, C. (1997). Population structure along a steep environmental gradient, consequences of flowering time and habitat variation in the snow buttercup. Evolution, 51(1), 79–94.  https://doi.org/10.1111/j.1558-5646.1997.tb02390.x.CrossRefGoogle Scholar
  113. Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O., & Ludwig, C. (2015). The trajectory of the Anthropocene: The great acceleration. The Anthropocene Review, 2(1), 81–98.  https://doi.org/10.1177/2053019614564785.CrossRefGoogle Scholar
  114. Stern, T. A., Baxter, A. K., & Barrett, P. J. (2005). Isostatic rebound due to glacial erosion within the Transantarctic Mountains. Geology, 33(3), 321–324.  https://doi.org/10.1130/G21068.1.CrossRefGoogle Scholar
  115. Stump, E. (2011). The roof at the bottom of the world: Discovering the Transantarctic Mountains. New Haven: Yale University Press. ISBN 978-0-30-017197-6.Google Scholar
  116. Thompson, L. G. (2000). Ice core evidence for climate change in the tropics: Implications for our future. Quaternary Science Reviews, 19(1–5), 19–35.  https://doi.org/10.1016/S0277-3791(99)00052-9.CrossRefGoogle Scholar
  117. Vaccaro, I., & Beltran, O. (Eds.). (2010). Social and ecological history of the Pyrenees: State, market, and landscape. Walnut Creek, CA: Left Coast Press. ISBN 978-1-59-874612-9.Google Scholar
  118. Van der Beek, P. (2018). Mountain relief, climate and surface processes. In C. Hoorn, A. Perrigo, & A. Antonelli (Eds.), Mountains, climate and biodiversity (pp. 51–68). Oxford, UK: Wiley Blackwell. ISBN 978-1-11-915987-2.Google Scholar
  119. Viviroli, D., & Weingartner, R. (2008). Water towers—A global view of the hydrological importance of mountains. In E. Wiegandt (Ed.), Mountains: Sources of water, sources of knowledge (pp. 15–20). Dordrecht: Springer. ISBN 978-9-04-817712-7.CrossRefGoogle Scholar
  120. Viviroli, D., Weingartner, R., & Messerli, B. (2003). Assessing the hydrological significance of the world’s mountains. Mountain Research and Development, 23(1), 32–40.  https://doi.org/10.1659/0276-4741(2003)023%5b0032:ATHSOT%5d2.0.CO;2.CrossRefGoogle Scholar
  121. Wang, P., Scherler, D., Liu-Zheng, J., Mey, J., Avouac, J. P., Zhang, Y., et al. (2014). Tectonic control of Yarlung Tsangpo Gorge revealed by a buried canyon in Southern Tibet. Science, 346(6212), 978–981.  https://doi.org/10.1126/science.1259041.CrossRefGoogle Scholar
  122. Wannamaker, P., Hill, G., Stodt, J., Maris, V., Ogawa, Y., Selway, K., et al. (2017). Uplift of the central transantarctic mountains. Nature Communications, 8(1), 1588.  https://doi.org/10.1038/s41467-017-01577-2.CrossRefGoogle Scholar
  123. West, J. A., Bickle, M. J., Collins, R., & Brassington, J. (2002). Small-catchment perspective on Himalayan weathering fluxes. Geology, 30(4), 355–358.  https://doi.org/10.1130/0091-7613(2002)030%3c0355:SCPOHW%3e2.0.CO;2.CrossRefGoogle Scholar
  124. Wilkinson, B. H., & McElroy, B. J. (2007). The impact of humans on continental erosion and sedimentation. Geological Society of America Bulletin, 119(1–2), 140–156.  https://doi.org/10.1130/B25899.1.CrossRefGoogle Scholar
  125. Williams, M., Zalasiewicz, J., Haff, P. K., Schwägerl, C., Barnosky, A. D., & Ellis, E. C. (2015). The Anthropocene biosphere. The Anthropocene Review, 2(3), 196–219.  https://doi.org/10.1177/2053019615591020.CrossRefGoogle Scholar
  126. Wohl, E. (2016). Rhythms of change in the rocky mountain national park. Lawrence, KA: University Press of Kansas. ISBN 978-0-70-062336-5.Google Scholar
  127. Wyżga, B., Zawiejska, J., & Hajdukiewicz, H. (2016). Multi-thread rivers in the Polish Carpathians: Occurrence, decline and possibilities of restoration. Quaternary International, 415, 344–356.  https://doi.org/10.1016/j.quaint.2015.05.015.CrossRefGoogle Scholar
  128. Xu, J., Grumbine, R. E., Shrestha, A., Eriksson, M., Yang, X., Wang, Y. U. N., et al. (2009). The melting Himalayas: Cascading effects of climate change on water, biodiversity, and livelihoods. Conservation Biology, 23(3), 520–530.  https://doi.org/10.1111/j.1523-1739.2009.01237.x.CrossRefGoogle Scholar
  129. Young, M. K., Isaak, D. J., Spaulding, S., Thomas, C. A., Barndt, S. A., Groce, M. C., et al. (2018). Effects of climate change on cold-water fish in the Northern Rockies. In J. E. Halofsky & D. L. Peterson (Eds.), Climate change and rocky mountain ecosystems (pp. 37–58). Cham: Springer. ISBN 978-3-31-956927-7.CrossRefGoogle Scholar
  130. Zalasiewicz, J. (2009). The earth after us: What legacy will humans leave in the rocks?. Oxford: Oxford University Press. ISBN 978-0-19-921498-3.Google Scholar
  131. Zalasiewicz, J., Steffen, W., Leinfelder, R., Wiliams, M., & Waters, C. (2017). Petrifying earth process: The stratigraphic imprint of key earth system parameters in the Anthropocene. Theory Culture and Society, 34(2–3), 83–104.  https://doi.org/10.1177/0263276417690587.CrossRefGoogle Scholar
  132. Zawiejska, J., & Wyżga, B. (2010). Twentieth-century channel change on the Dunajec River, southern Poland: Patterns, causes and controls. Geomorphology, 117(3–4), 234–246.  https://doi.org/10.1016/j.geomorph.2009.01.014.CrossRefGoogle Scholar
  133. Zeitler, P. K., Meltzer, A. S., Koons, P. O., Craw, D., Hallet, B., Chamberlain, C. P., et al. (2001). Erosion, Himalayan geodynamics, and the geomorphology of metamorphism. GSA Today, 11(1), 4–9.CrossRefGoogle Scholar
  134. Zemp, M., Frey, H., Gartner-Roer, I., Nusssbaumer, S., Hoelzle, M., Paul, F., et al. (2015). Historically unprecedented global glacier decline in the early 21st century. Journal of Glaciology, 61(228), 745–762.  https://doi.org/10.3189/2015JoG15J017.CrossRefGoogle Scholar
  135. Zhang, P., Molnar, P., & Downs, W. R. (2001). Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature, 410(6831), 891–897.  https://doi.org/10.1038/35073504.CrossRefGoogle Scholar
  136. Zhu, D., Tian, L., Wang, J., Wang, Y., & Cui, J. (2014). Rapid glacier retreat in the Naimona’Nyi region, Western Himalayas, between 2003 and 2013. Journal of Applied Remote Sensing.  https://doi.org/10.1117/1.jrs.8.083508.CrossRefGoogle Scholar
  137. Zizka, A., & Antonelli, A. (2018). Mountains of diversity. Nature, 555, 173–174.  https://doi.org/10.1038/d41586-018-02062-6.CrossRefGoogle Scholar
  138. Zomer, R. J., Ustin, S. L., & Carpenter, C. C. (2001). Land cover change along tropical and subtropical riparian corridors within the Makalu Barun National Park and Conservation Area, Nepal. Mountain Research and Development, 21(2), 175–183.  https://doi.org/10.1659/0276-4741(2001)021%5b0175:LCCATA%5d2.0.CO;2n.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Center for Tourism ResearchWakayama UniversityWakayamaJapan

Personalised recommendations