Skip to main content

Advertisement

Log in

Spatial patterns and correlates of mortality due to selected non-communicable diseases among adults in South Africa, 2011

  • Published:
GeoJournal Aims and scope Submit manuscript

Abstract

South Africa has a high prevalence of non-communicable diseases (NCDs) compared to other African countries. Government has predicted that NCDs will be a major threat of health in the country in the next 20–30 years and recommended a significant reduction in NCDs. This research studies spatial patterns of deaths resulting from chronic lower respiratory diseases (CLRD), malignant neoplasms of digestive organs (MNDO), diabetes mellitus (DM) and cerebrovascular diseases (CVD) among adults aged 15–69 years in 2011 at municipality level. The study uses secondary data from the civil registration system; population census; and supplementary information from the Business Register and a database of public health facilities. Moran’s Index, hot spot analysis and geographically weighted regression were applied to measure spatial autocorrelation of age-standardised death rates; to identify municipalities of high risk of deaths due to selected NCDs; and associated socio-economic and demographic factors. Clusters of high risk of deaths from selected NCDs were identified, with those for CLRD and MNDO mainly in the urban municipalities around the mid and western parts of the country while for DM and CVD they occurred mostly in the urban and rural north-eastern part, as well as in the urban municipalities of Northern Cape for CVD. Hot spots showed differential socio-economic and demographic risk factors in NCDs, which included sex, urbanisation, density of public hospitals; death occurrence in health facilities; smoking; asbestos roofing; mining and quarrying businesses. Findings highlight the importance of community-specific interventions and the need for a neighbourhood-based approach in tackling NCDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. Life expectancy at birth is defined as “the average number of years that a new-born could expect to live if he or she were to pass through life subject to the age-specific mortality rates of a given period” (United Nations 2000: 45). It is one of the most frequently used and internationally recognised indicators for well-being and health status of a population (Australian Bureau of Statistics 2012).

References

  • Ahmad, O. B., Boschi-Pinto, C., Lopez, A. D., Murray, C. J. L., Lozano, R., & Inoue, M. (2001). Age standardization of rates: A new WHO standard. GPE Discussion Paper Series, 31, EIP/GPE/EBD. Geneva: World Health Organization.

  • Al-Ahmadi, K., & Al-Zahrani, A. (2013). Spatial autocorrelation of cancer incidence in Saudi Arabia. International Journal of Environmental Research and Public Health, 10(12), 7207–7228.

    Article  Google Scholar 

  • Almeida, M. C., Gomes, Cde M., & Nascimento, L. F. (2014). Spatial distribution of deaths due to Alzheimer’s disease in the state of São Paulo, Brazil. Sao Paulo medical journal, 132(4), 199–204.

    Article  Google Scholar 

  • Arbex, M. A., Santos, U. P., Martins, L. C., Saldiva, P. H. N., Pereira, L. A. A., & Ferreira Braga, A. L. F. (2012). Air pollution and the respiratory system. Jornal Brasileiro de Pneumologia 38(5), 643–655. (online) Available from http://www.scielo.br/pdf/jbpneu/v38n5/en_v38n5a15.pdf. Accessed 18 September 2015.

  • Auchincloss, A. H., Gebreab, S. Y., Mair, C., & Diez Roux, A. V. (2012). A review of spatial methods in epidemiology, 2000–2010. Annual Review of Public Health, 33(April), 107–122.

    Article  Google Scholar 

  • Australian Bureau of Statistics (ABS). (2012). Year Book Australia, 2012: Mortality, life expectancy and causes of death. Report 1301.0, Canberra: ABS.

  • Australian Institute of Health and Welfare (AIHW). (2011). Principles on the use of direct age-standardisation in administrative data collections: for measuring the gap between Indigenous and non-Indigenous Australians. Cat. no. CSI 12. Canberra: AIHW.

  • Australian Institute of Health and Welfare (AIHW). (2014). Cardiovascular disease, diabetes and chronic kidney disease—Australian facts: Mortality. Cardiovascular, diabetes and chronic kidney disease series no. 1. Cat. no. CDK 1.Canberra: AIHW.

  • Baartjes N.L. & Gounden K.G. (n.d). Causes of mine decline in South Africa (online). Available from http://www.imhc.co.za/assets/pdf/papers/Causes%20of%20Declining%20Mining%20in%20SA-Neale%20Paper%202.pdf. Accessed 06 September 2015.

  • Bagheri, N., Gilmour, B., McRae, I., Konings, P., Dawda, P., Fante, P. D., & van Weel, C. (2015). Community cardiovascular disease risk from cross-sectional general practice clinical data: A spatial analysis. Public Health Research, Practice and Policy, 12, E26. doi:10.5888/pcd12.140379.

    Google Scholar 

  • Bailey, T. C. (2001). Spatial statistical methods in health. Cad. Saúde Pública, 17(5), 1083–1089.

    Article  Google Scholar 

  • Baldwin W. & Amato L. (2012). Fact Sheet: Global burden of noncommunicable diseases (online). Available from http://www.prb.org/Publications/Datasheets/2012/world-population-data-sheet/fact-sheet-ncds.aspx. Accessed 27 May 2015.

  • Behrman, J. R., Behrman, J. A., & Perez, N. M. (2011). Out of sync? Demographic and other social science research on health conditions in developing countries. Demographic Research, 24(2), 45–78.

    Article  Google Scholar 

  • Bobrow, K., & Ehrlich, R. (2014). Noncommunicable disease epidemiology. In R. Ehrlich & G. Joubert (Eds.), Epidemiology: A research manual for South Africa (3rd ed.). Cape Town: Oxford University Press.

    Google Scholar 

  • Boda, P. J. (2013). The challenge of combatting non-communicable diseases in Trinidad: Access to hospital care. Health, 5(11b), 12–18.

    Article  Google Scholar 

  • Boutayeb, A., Boutayeb, S., & Boutayeb, W. (2013). Multi-morbidity of non-communicable diseases and equity in WHO Eastern Mediterranean countries. International Journal for Equity in Health, 12(60), 1–13.

    Google Scholar 

  • Bradshaw, D., Groenewald, P., Laubscher, R., Nannan, N., Nojilana, B., Norman, R., et al. (2003). Initial burden of disease estimates for South Africa, 2000. South African Medical Journal, 93(9), 682–688.

    Google Scholar 

  • Buckingham-Jeffery, E., Gomez-Olive, F. X., House, T., & Griffiths, F. (n.d). Chronic illness and refugee status in rural South Africa (online). Available from http://www2.warwick.ac.uk/fac/cross_fac/complexity/people/students/dtc/students2012/buckinghamjeffery/miniproject1/reportebjeffery.pdf. Accessed 22 June 2015.

  • Carey, M. A., Card, J. W., Voltz, J. W., Arbes, S. J., Germolec, D. R., Korach, K. S., & Zeldin, D. C. (2007). It’s all about sex: male-female differences in lung development and disease. Trends in Endocrinology and Metabolism, 18(8), 308–313.

    Article  Google Scholar 

  • Centers for Disease Control and Prevention (CDC). (2003). Overview of non-communicable diseases and related risk factors (online). Available from http://www.cdc.gov/globalhealth/fetp/training_modules/new-8/overview-of-ncds_ppt_qa-revcom_09112013.pdf. Accessed 17 May 2015.

  • Centers for Disease Control and Prevention (CDC). (2015). Lung Cancer Rates by Race and Ethnicity (online). Available from http://www.cdc.gov/cancer/lung/statistics/race.htm. Accessed 30 September 2015.

  • Crighton, E. J., Feng, J., Gershon, A., Guan, J., & To, T. (2012). A spatial analysis of asthma prevalence in Ontario. Canadian Journal of Public Health, 103(5), e384–e389.

    Google Scholar 

  • Crighton, E. J., Ragetlie, R., Lou, J., To, T., & Gershon, A. (2015). A spatial analysis of COPD prevalence, incidence, mortality and health service use in Ontario. Health Reports, 26(3), 10–18.

    Google Scholar 

  • Curtis, S. (2014). Geography and Health (online). Available from http://www.oxfordbibliographies.com/view/document/obo-9780199756797/obo-9780199756797-0121.xml. Accessed 18 May 2015.

  • De Castro, M. C. (2007). Spatial demography: An opportunity to improve policy making at diverse decision levels. Population Research and Policy Review, 26(5–6), 477–509.

    Article  Google Scholar 

  • Diez Roux, A. V., Stein, Merken S., Arnett, D., Chambless, L., Massing, M., Nieto, F. J., et al. (2001). Neighbourhood of residence and incidence of coronary heart disease. The New England Journal of Medicine, 345(2), 99–106.

    Article  Google Scholar 

  • Eurostat. (2015). Health statistics at regional level (online). Available from http://ec.europa.eu/eurostat/statistics-explained/index.php/Health_statistics_at_regional_level. Accessed 30 September 2015.

  • Fabiyi, O. O., & Garuba, O. E. (2015). Geo-spatial analysis of cardiovascular disease and biomedical risk factors in Ibadan, South-Western Nigeria. Journal of Settlements and Spatial Planning, 6(1), 61–69.

    Google Scholar 

  • Fukuda, Y., Umezaki, M., Nakamura, K., & Takano, T. (2005). Variations in societal characteristics of spatial disease clusters: Examples of colon, lung and breast cancer in Japan. International Journal of Health Geographics,. doi:10.1186/1476-072X-4-16.

    Google Scholar 

  • Getis, A., & Ord, J. K. (1992). The analysis of spatial association by use of distance statistics. Geographical Analysis, 24, 189–206. doi:10.1111/j.1538-4632.1992.tb00261.x.

    Article  Google Scholar 

  • Gold, D. R., & Samet, J. M. (2013). Air pollution, climate, and heart disease. Circulation, 128(21), e411–e414. doi:10.1161/CIRCULATIONAHA.113.003988.

    Article  Google Scholar 

  • Goodman, R. A., Posner, S. F., Huang, E. S., Parekh, A. K., & Koh, H. K. (2013). Defining and measuring chronic conditions: Imperatives for research, policy, program, and practice. Preventing Chronic Diseases, 10, E66. doi:10.5888/pcd10.120239.

    Google Scholar 

  • Gostin, L. O., & Gostin, K. G. (2009). A broader liberty: J.S. Mill, paternalism and the public’s health. Public Health, 123, 214–221. doi:10.1016/j.puhe.2008.12.024.

    Article  Google Scholar 

  • Goswami, E., Craven, V., Dahlstrom, D. L., Alexander, D., & Mowat, F. (2013). Domestic asbestos exposure: A review of epidemiologic and exposure data. International Journal of Environmental Research and Public Health, 10(11), 5629–5670. doi:10.3390/ijerph10115629.

    Article  Google Scholar 

  • Gottlieb, M. S., Sheart, C. L., & Sealet, D. B. (1982). Lung cancer mortality and residential proximity to industry. Environmental Health Perspectives, 45, 157–164. doi:10.1289/ehp.8245157.

    Article  Google Scholar 

  • Green, C., Hoppa, R. D., Kue, Young T., & Blanchard, J. F. (2003). Geographic analysis of diabetes prevalence in an urban area. Social Science and Medicine, 57(3), 551–560.

    Article  Google Scholar 

  • Gwatkin, D., Guillot, M., & Heuveline, P. (1999). The burden of disease among the global poor. Lancet, 354(9178), 586–589.

    Article  Google Scholar 

  • Haining, R. (1998). Spatial statistics and the analysis of health data. In A. C. Gatrell & M. Loytonen (Eds.), GIS and health. London: Taylor & Francis.

    Google Scholar 

  • Han, K., Kim, S. J., Jang, S., Kim, S. J., Lee, S. Y., Lee, H. J., & Park, E. (2015). Positive correlation between care given by specialists and registered nurses and improved outcomes for stroke patients. Journal of the Neurological Sciences, 353(1–2), 137–142.

    Article  Google Scholar 

  • Hart, A., McCulloch, B., Harper, C., Gardiner, N., Rutherford, S., Baker, P., et al. (2005). Report on GIS and public health spatial applications, Public Health Services Branch. Brisbane: Queensland Health.

    Google Scholar 

  • Health Canada. (2013). Respiratory Effects of Air Pollution (online). Available from http://www.hc-sc.gc.ca/ewh-semt/air/out-ext/health-sante/respir-eng.php. Accessed 18 September 2015.

  • Hendriks, M. E., Wit, F. W. N. M., Roos, M. T. L., Brewster, L. M., Akande, T. M., de Beer, I. H., et al. (2012). Hypertension in sub-Saharan Africa: Cross-sectional surveys in four rural and urban communities. PLoS ONE, 7(3), e32638. doi:10.1371/journal.pone.0032638.

    Article  Google Scholar 

  • Hipp, J. A., & Chalise, N. (2015). Spatial analysis and correlates of county-level diabetes prevalence, 2009–2010. Public Health Research, Practice and Policy, 12(E08), 1–9.

    Google Scholar 

  • Holt, J. B., Zhang, X., Presley-Cantrell, L., & Croft, J. B. (2011). Geographic disparities in chronic obstructive pulmonary disease (COPD) hospitalization among Medicare beneficiaries in the United States. International Journal of COPD, 6, 321–328. doi:10.2147/COPD.S19945.

    Article  Google Scholar 

  • Hunt, B. R., Whitman, S., & Henry, C. A. (2014). Age-adjusted diabetes mortality rates vary in local communities in a metropolitan area: Racial and spatial disparities and correlates. Diabetes Care, 37(5), 1279–1286.

    Article  Google Scholar 

  • Ibrahim, M. M., & Damasceno, A. (2012). Hypertension in developing countries. Lancet, 380(9841), 611–619.

    Article  Google Scholar 

  • International Atomic Energy Agency (IAEA). (2011). Inequity in cancer care: A global perspective. IAEA Human health reports, (No. 3). Vienna: IAEA.

  • International Diabetes Federation Europe (IDF Europe) (2013). High number of people with diabetes in Europe receiving inadequate care (online). Press Release. Available from http://www.idf.org/sites/default/files/FINAL%20IDF%20Europe%20Press%20release%20access%20to%20diabetes%20care%20-%20%2013%2011%2013.doc. Accessed 30 September 2015.

  • Jerrett, M., Gale, S., & Kontgis, C. (2010). Spatial modeling in environmental and public health research. International Journal of Environmental Research and Public Health, 7(4), 1302–1329.

    Article  Google Scholar 

  • Kengne, A. P., Sobngwi, E., Fezeu, L., Awah, P. K., Dongmo, S., & Mbanya, J. (2009). Setting-up nurse-led pilot clinics for the management of noncommunicable diseases at primary health care level in resource-limited settings of Africa. Pan African Medical Journal, 3(10).

  • Kulldorff, M., Feuer, E. J., Miller, B. A., & Freedman, L. S. (1997). Breast cancer clusters in the Northeast United States: A geographic analysis. American Journal of Epidemiology, 146(2), 161–170.

    Article  Google Scholar 

  • Lu, J. L. (2012). Occupational health and safety in small scale mining: Focus on women workers in the Philippines. Journal of International Women’s Studies, 13(3), 103–113.

    Google Scholar 

  • Marquez, P. V., & Farrington, J. L. (2013). The challenge of non-communicable diseases and road traffic injuries in sub-Saharan Africa: An overview. Washington DC: The World Bank.

    Google Scholar 

  • Matthews, S. A., & Yang, T. (2012). Mapping the results of local statistics: Using geographically weighted regression. Demographic Research, 26(6), 151–166. doi:10.4054/DemRes.2012.26.6.

    Article  Google Scholar 

  • McCulloch, J. (2007). Surviving blue asbestos: Mining and occupational disease in South Africa and Australia. Transformation, 65, 68–93.

    Article  Google Scholar 

  • McNab, J., Schneider, C. H., & Leeder, S. (2014). Non-communicable diseases and implications for medical practice in Australia: A framework for analysis. Medical Journal of Australia, 201(1), s29–s32.

    Article  Google Scholar 

  • Meliker, J. R., Jacquez, G. M., Goovaerts, P., Copeland, G., & Yassine, M. (2009). Spatial cluster analysis of early stage breast cancer: A method for public health practice using cancer registry data. Cancer Causes and Control, 20(7), 1061–1069.

    Article  Google Scholar 

  • Milne, S. J., Garton, E., Nelson, G., Murray, J., Davies, J. C. A., & Phillips, J. I. (2013). A South African database of samples analysed for the presence of asbestos. Occupational Health Southern Africa, 19(6), 14–21.

    Google Scholar 

  • Miranda, J. J., Kinra, S., Casas, J. P., Davey Smith, G. D., & Ebrahim, S. (2008). Non-communicable diseases in low- and middle-income countries: Context, determinants and health policy. Tropical Medicine & International Health, 13(10), 1225–1234.

    Article  Google Scholar 

  • Mohan, V. (2004). Why are Indians more prone to diabetes? Journal of the Association of Physicians of India, 52, 468–474.

    Google Scholar 

  • Mohebbi, M., Mahmoodi, M., Wolfe, R., Nourijelyani, K., Mohammad, K., Zeraati, H., & Fotouhi, A. (2008). Geographical spread of gastrointestinal tract cancer incidence in the Caspian Sea region of Iran: Spatial analysis of cancer registry data. BMC Cancer, 8(137), 1–12.

    Google Scholar 

  • Molleutze, W. F., & Levitt, N. S. (2006). Diabetes mellitus and impaired glucose tolerance in South Africa. In K. Steyn, J. Fourie, & N. Temple (Eds.), Chronic diseases of lifestyle in South Africa since (pp. 1995–2005). Tygerberg: Medical Research Council.

    Google Scholar 

  • Moore, D. A., & Carpenter, T. E. (1999). Spatial analytical methods and geographic information systems: Use in health research and epidemiology. Epidemiologic Reviews, 21(2), 143–161.

    Article  Google Scholar 

  • Mzileni, O., Sitas, F., Steyn, K., Carrara, H., & Bekker, P. (1999). Lung cancer, tobacco, and environmental factors in the African population of the Northern Province, South Africa. Tobacco Control, 8(4), 398–401.

    Article  Google Scholar 

  • National Cancer Institute. (2014). Cancer clusters (online). Available from http://www.cancer.gov/about-cancer/causes-prevention/risk/substances/cancer-clusters-fact-sheet. Accessed 30 September 2015.

  • Natural Standard Research Collaboration. (2011). Chronic illnesses and quality of life (online). Available from http://www.health24.com/Medical/Diseases/Chronic-illness-and-quality-of-life-20120721. Accessed 20 April 2015.

  • Neelon, B., & Lawson, A. B. (2014). Special issue on spatial methods for health policy research. Statistical Methods in Medical Research, 23(2), 117–118.

    Article  Google Scholar 

  • Newman, A. B., & Brach, J. S. (2001). Gender gap in longevity and disability in older persons. Epidemiological Reviews, 23(2), 343–350.

    Article  Google Scholar 

  • Nikolic, I. A., Stanciole, A. E., & Zaydman, M. (2011). Chronic Emergency: Why NCDs Matter. Health, Nutrition and Population (HNP) Discussion Paper, July.

  • Nkosi, V., Wichmann, J., & Voyi, K. (2015). Chronic respiratory disease among the elderly in South Africa: Any association with proximity to mine dumps? Environmental Health, 14(33). doi:10.1186/s12940-015-0018-7.

    Article  Google Scholar 

  • Noble, D., Smith, D., Mathur, R., Robson, J. & Greenhalgh. T. (2012). Feasibility study of geospatial mapping of chronic disease risk to inform public health commissioning. BMJ Open (online), 2:1. Available from http://bmjopen.bmj.com/content/2/1/e000711.full.pdf+html. Accessed 22 June 2015.

  • Norman, R., Mqoqi, N., & Sitas, F. (2006). Lifestyle-induced cancer in South Africa. In K. Steyn, J. Fourie, & N. Temple (Eds.), Chronic diseases of lifestyle in South Africa: 1995-2005. Tygerberg: Medical Research Council.

    Google Scholar 

  • Nunes, K. V. R., Neves, S. M. A. S., & Ignotti, E. (2013). Mortality due to diseases of the circulatory system among the elderly population in Brazilian Amazon: Temporal and spatial analysis. Rev Bras Epidemiol, 16(4), 838–848.

    Article  Google Scholar 

  • Nweke, O. C., & Sanders, W. H. (2009). Modern environmental health hazards: A public health issue of increasing significance in Africa. Environmental Health Perspectives, 117(6), 867–870.

    Article  Google Scholar 

  • Odoi, A., & Busingye, D. (2014). Neighborhood geographic disparities in heart attack and stroke mortality: Comparison of global and local modeling approaches. Spatial and Spatio-temporal Epidemiology, 11, 109–123. doi:10.1016/j.sste.2014.10.001.

    Article  Google Scholar 

  • Pacione, M. (2009). Urban geography: A global perspective (3rd ed.). London: Routledge.

    Google Scholar 

  • Pattaraarchachai, J., Rao, C., Polprasert, W., Porapakkham. Y., Pao-in, W., Singwerathum, N. & Lopez, A. D. (2010). Research Cause-specific mortality patterns among hospital deaths in Thailand: Validating routine death certification. Population Health Metrics, 8(12).

  • Pedigo, A., Aldrich, T., & Odoi, A. (2011). Neighborhood disparities in stroke and myocardial infarction mortality: A GIS and spatials can statistics approach. BMC Public Health,. doi:10.1186/1471-2458-11-644.

    Google Scholar 

  • Phillips, J. I., Rees, D., Murray, J., & Davies, J. C. A. (2012). Mineralogy and malignant mesothelioma: The South African experience. In C. Belli & S. Anand (Eds.), malignant mesothelioma. Intech: Rijeka, Croatia. doi:10.5772/47974.

    Google Scholar 

  • Pillay-Van, Wyk V., Laubscher, R., Msemburi, W., Dorrington, R. E., Groenewald, P., Vos, T., et al. (2014). Second South African National Burden of Disease Study: Data cleaning, validation and SA NBD List. Cape Town: Burden of Disease Research Unit, South African Medical Research Council.

    Google Scholar 

  • Province of Gauteng. (2014). Gauteng to phase out asbestos roofing (online). Media Release of 18 March 2014. Gauteng Office of the Premier. Available from http://www.gov.za/government-phase-out-asbestos-roofing-gauteng. Accessed 04 September 2015.

  • Puoane, T. (2013). PURE-ifying research on chronic non-communicable diseases in South Africa (online). Available from http://sacemaquarterly.com/wp-content/uploads/2013/06/Thandi_-PUREifying-research_article-1_for-PDF.pdf. Accessed 05 November 2015.

  • Republic of South Africa (RSA). (1992). Act on births and deaths registration, Act 51 of 1992. Government Gazette of South Africa, No. 13953.

  • Republic of South Africa (RSA). (1993). Act on tobacco products control, Act 83 of 1993. Government Gazette of South Africa, No. 14916.

  • Republic of South Africa (RSA). (2009). Local government turnaround strategy. Pretoria: Department of Cooperative Governance and Traditional Affairs.

    Google Scholar 

  • Republic of South Africa (RSA). (2011). National Development Plan, 2030. Pretoria: National Planning Commission.

    Google Scholar 

  • Republic of South Africa (RSA). (2012). Quarterly Labour Force Survey, Quarter 4, 2011, Statistical release P0211. Pretoria: Statistics South Africa.

    Google Scholar 

  • Republic of South Africa (RSA). (2013a). NSDA: A long and healthy life for all South Africans. Pretoria: Department of Health.

    Google Scholar 

  • Republic of South Africa (RSA). (2013b). Strategic Plan for the prevention and control of noncommunicable diseases 2013–17, RP06/2013. Pretoria: Department of Health.

    Google Scholar 

  • Republic of South Africa (RSA) (2014a). Mortality and causes of death in South Africa: findings from death notification, 2013. Statistical release P0309.3, Pretoria: Statistics South Africa.

  • Republic of South Africa (RSA). (2014b). Mortality and causes of death in South Africa: findings from death notification, 2011. Statistical release P0309.3. Pretoria: Statistics South Africa.

  • Republic of South Africa (RSA). (2015a). Business register-based statistics report, Version 1.00. Pretoria: Statistics South Africa.

  • Republic of South Africa (RSA). (2015b). Quarterly Labour Force Survey, Quarter 4, 2014, Statistical release P0211. Pretoria: Statistics South Africa.

    Google Scholar 

  • Republic of South Africa (RSA), & Medical Research Council & OrcMacro. (2007). South Africa Demographic and Health Survey 2003. Pretoria: Department of Health.

    Google Scholar 

  • Republic of South Africa (RSA), South African Medical Research Council & Measure DHS+ . (2002). South Africa Demographic and Health Survey 1998, Full Report. Pretoria: Department of Health.

  • Rezaeian, M., Dunn, G., Leger, S. T., & Appleby, L. (2007). Geographical epidemiology, spatial analysis and geographical information systems: A multidisciplinary glossary. Journal of Epidemiology and Community Health, 61(2), 98–102.

    Article  Google Scholar 

  • Rodriguez, D. (2009). The role of gender in esophageal cancer risk (online). Available from http://www.everydayhealth.com/esophageal-cancer/esophageal-cancer-and-gender.aspx. Accessed 06 September 2015.

  • Saini, A. K. (2013). Spatial Modelling of Cardiovascular Mortality Patterns: A GIS based study of Rural Bist Doab Region (Punjab, India). IOSR Journal of Humanities and Social Science, 14(1), 25–30.

    Article  Google Scholar 

  • Sherman, R. L., Henry, K. A., Tannenbaum, S. L., Feaster, D. J., Kobetz, E., & Lee, D. J. (2014). Applying spatial analysis tools in public health: An example using SaTScan to detect geographic target for colorectal cancer screening interventions. Preventing chronic disease, 11, E41. doi:10.5888/pcd11.130264.

    Article  Google Scholar 

  • Shisana, O., Labadarios, D., Rehle, T., Simbayi, L., Zuma, K., Dhansay, A., et al. (2013). South African National Health and Nutrition Examination Survey (SANHANES-1). Cape Town: HSRC Press.

    Google Scholar 

  • Shkolnikov, V., McKee, M., & Leon, D. A. (2001). Changes in life expectancy in Russia in the mid-1990s. Lancet, 357(9260), 917–921.

    Article  Google Scholar 

  • Sifaki-Pistolla, D., Pistolla, G., & Philalithis, A. (2013). Cancer mortality in 180 countries of the world investigated through spatial autocorrelation models. Is there a clustered pattern of cancer? International Journal of Mathematical Sciences in Medicine, 1(1), 6–16.

    Google Scholar 

  • Singh, N., Thompson, L., & van Weele, G. (2013). Air quality, State of environment outlook report for the Western Cape province. Cape Town: Department of Environmental Affairs and Development Planning.

    Google Scholar 

  • Smith, L., & Yadav, P. (2014). Improving access to medicine through better supply chains. In L. Galambos & J. L. Sturchio (Eds.), Non-communicable diseases in the developing world: Addressing gaps in global policy and research. Maryland: John Hopkins University Press.

    Google Scholar 

  • Stapleton, M., Howard-Thompson, A., George, C., Hoover, R. M., & Self, T. H. (2011). Smoking and asthma. Journal of the American Board of Family Medicine, 24(3), 313–322.

    Article  Google Scholar 

  • State of Queensland. (2014). Technical note: Conserving Roofs (online). Available from http://www.ehp.qld.gov.au/assets/documents/land/heritage/technical-note-roofing.pdf. Accessed 07 October 2015.

  • Steyn, K. (2006a). Overview and conclusions: A perspective on dealing with chronic diseases of lifestyle in South Africa. In K. Steyn, J. Fourie, & N. Temple (Eds.), chronic diseases of lifestyle in South Africa (pp. 1995–2005). Tygerberg: Medical Research Council.

    Google Scholar 

  • Steyn, K. (2006b). Conceptual framework for chronic diseases of lifestyle in South Africa. In K. Steyn, J. Fourie, & N. Temple (Eds.), chronic diseases of lifestyle in South Africa (pp. 1995–2005). Tygerberg: Medical Research Council.

    Google Scholar 

  • Stieve, T. (2012). Moran’s I and Spatial Regression (online). Available from http://sites.tufts.edu/gis/files/2013/11/Morans-I-and-Spatial-Regression.docx. Accessed 18 June 2015.

  • The Asbestos Relief Trust. (n.d). A ten-year history: 2003–2013 (online). Available from http://www.asbestostrust.co.za/documents/Asbestos_Relief_Trust_History-final.pdf. Accessed 03 September 2015.

  • Tobler, W. R. (1970). A computer movie simulating urban growth in the Detroit Region. Economic Geography, 46 (Supplement: Proceedings. International Geographical Union, Commission on Quantitative Methods). pp. 234–240.

  • Trupin, L., Earnest, G., San, Pedro M., Balmes, J. R., Eisner, M. D., Yelin, E., et al. (2003). The occupational burden of chronic obstructive pulmonary disease. European Respiratory Journal, 22, 462–469.

    Article  Google Scholar 

  • Tsai, P. J., Lin, M. L., Chu, C. M., & Perng, C. H. (2009). Spatial autocorrelation analysis of health care hotspots in Taiwan in 2006. BMC Public Health, 9(464). doi:10.1186/1471-2458-9-464.

  • Tuoane-Nkhasi, M., & Moyo, A. (2016). Trends and patterns of reporting causes of death in South Africa. In C. O. Odimegwu & J. Kekovole (Eds.), Social demography of South Africa: Advances and emerging issues. New York: Routledge.

    Google Scholar 

  • United Nations (UN). (2000). Charting the Progress of Populations. United Nations publication, ST/ESA/SER.R/151. Department of Economic and Social Affairs, Population Division.

  • United Nations (UN). (2012a). Changing levels and trends in mortality: The role of patterns of death by cause. United Nations publication, ST/ESA/SER.A/318). Department of Economic and Social Affairs, Population Division.

  • United Nations (UN). (2012b). Resolution adopted by the General Assembly. United Nations Publication, A/RES/66/2. Sixty-sixth session of the General Assembly, 3rd plenary meeting: 19 September 2011. Available from http://www.who.int/nmh/events/un_ncd_summit2011/political_declaration_en.pdf. Accessed 22 June 2015.

  • United Nations (UN) Millennium Project. (2005). Investing in development: A practical plan to achieve the Millennium Development Goals. London and New York: Earthscan.

    Google Scholar 

  • United Nations Development Programme (UNDP). (2013). Addressing social determinants of noncommunicable diseases. Discussion paper (online). Available from http://www.undp.org/content/dam/undp/library/hivaids/English/Discussion_Paper_Addressing_the_Social_Determinants_of_NCDs_UNDP_2013.pdf. Accessed 29 May 2015.

  • United Nations Development Programme (UNDP). (2014). Human Development Report 2014: Sustaining human progress: Reducing vulnerability and building resilience. New York: UNDP.

    Google Scholar 

  • Unwin, N., Setel, P., Rashid, S., Mugusi, F., Mbanya, J., Kitange, H., et al. (2001). Noncommunicable diseases in sub-Saharan Africa: Where do they feature in the health research agenda? Bulletin of the World Health Organization, 79(10), 947–953.

    Google Scholar 

  • US Department of Veterans Affairs. (2013). Exposure to asbestos: a resource for veterans, service members and their families (online). Available from http://www.warrelatedillness.va.gov/education/factsheets/asbestos-exposure.pdf. Accessed 07 September 2015.

  • World Health Organization (WHO). (2002). World Health Report 2002. Geneva: WHO.

    Google Scholar 

  • World Health Organization (WHO). (2007). Cancer control: Knowledge into action: WHO guide for effective programmes, Module 2. Geneva: WHO.

    Google Scholar 

  • World Health Organization (WHO). (2009). International classification of diseases and related health problems, 10th revision. Vol. 1, 2008 Edition. Geneva: WHO.

  • World Health Organization (WHO). (2010). Global status report on non-communicable diseases 2010. Geneva: WHO.

    Google Scholar 

  • World Health Organization (WHO). (2011). Global status report on non-communicable diseases 2010. Geneva: WHO.

    Google Scholar 

  • World Health Organization (WHO). (2014). Global status report on non-communicable diseases 2014. Geneva: WHO.

    Google Scholar 

  • World Health Organization (WHO). (2015). World health statistics 2015. Geneva: WHO.

    Google Scholar 

  • Wu, C. C., Hsu, T. W., Chang, C. M., Yu, C. H., Wang, Y. F., & Ching-Chih, L. (2014). The effect of individual and neighbourhood socioeconomic status on gastric cancer survival. PLoS ONE, 9(2), e89655. doi:10.1371/journal.pone.0089655.

    Article  Google Scholar 

  • Yusuf, S., Reddy, S., Ôunpuu, S., & Anand, S. (2001). Global burden of cardiovascular diseases part II: Variations in cardiovascular disease by specific ethnic groups and geographic regions and prevention strategies. Circulation, 104(23), 2855–2864.

    Article  Google Scholar 

  • Zhang, X., Geiss, L. S., Cheng, Y. J., Beckles, G. L., Gregg, E. W., & Kahn, H. S. (2008). The missed patient with diabetes: How access to health care affects the detection of diabetes. Diabetes Care, 31(9), 1748–1753.

    Article  Google Scholar 

  • Zhou, M., Astell-Burt, T., Bi, Y., Feng, X., Jiang, Y., Li, Y., et al. (2015). Geographical variation in diabetes prevalence and detection in China: Multilevel spatial analysis of 98,058 adults. Diabetes Care, 38(1), 72–81.

    Article  Google Scholar 

  • Zhou, J., Lurie, M. N., Bärnighausen, T., McGarvey, S. T., Newell, M. L., & Tanser, F. (2012). Determinants and spatial patterns of adult overweight and hypertension in a high HIV prevalence rural South African population. Health & Place, 18(6), 1300–1306.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda van Eeden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuoane-Nkhasi, M., van Eeden, A. Spatial patterns and correlates of mortality due to selected non-communicable diseases among adults in South Africa, 2011. GeoJournal 82, 1005–1034 (2017). https://doi.org/10.1007/s10708-016-9725-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10708-016-9725-z

Keywords

Navigation