Advertisement

GeoJournal

, Volume 82, Issue 2, pp 397–414 | Cite as

Towards a geocomputational landscape epidemiology: surveillance, modelling, and interventions

  • Colin Robertson
Article

Abstract

The ability to explicitly represent infectious disease distributions and their risk factors over massive geographical and temporal scales has transformed how we investigate how environment impacts health. While landscape epidemiology studies have shed light on many aspects of disease distribution and risk differentials across geographies, new computational methods combined with new data sources such as citizen sensors, global spatial datasets, sensor networks, and growing availability and variety of satellite imagery offer opportunities for a more integrated approach to understanding these relationships. Additionally, a large number of new modelling and mapping methods have been developed in recent years to support the adoption of these new tools. The complexity of this research context results in study-dependent solutions and prevents landscape approaches from deeper integration into operational models and tools. In this paper we consider three common research contexts for spatial epidemiology; surveillance, modelling to estimate a spatial risk distribution and the need for intervention, and evaluating interventions and improving healthcare. A framework is proposed and a categorization of existing methods is presented. A case study into leptospirosis in Sri Lanka provides a working example of how the different phases of the framework relate to real research problems. The new framework for geocomputational landscape epidemiology encompasses four key phases: characterizing assemblages, characterizing functions, mapping interdependencies, and examining outcomes. Results from Sri Lanka provide evidence that the framework provides a useful way to structure and interpret analyses. The framework reported here is a new way to structure existing methods and tools of geocomputation that are increasingly relevant to researchers working on spatially explicit disease-landscape studies.

Keywords

Geocompuation Landscape change Disease risk Framework GIS 

Notes

Acknowledgments

The authors gratefully acknowledge the Epidemiological Unit of the Ministry of Health, Government of Sri Lanka, for providing access to the leptospirosis surveillance data used in this paper.

Compliance with ethical standards

Conflict of interest

None.

Research involving human participants and/or animals

No humans were involved in this research.

Informed consent

No human participants were involved in this study.

References

  1. Agampodi, S. B., Peacock, S. J., Thevanesam, V., Nugegoda, D. B., Smythe, L., Thaipadungpanit, J., et al. (2011). Leptospirosis outbreak in Sri Lanka in 2008: Lessons for assessing the global burden of disease. The American Journal of Tropical Medicine and Hygiene, 85(3), 471–478.CrossRefGoogle Scholar
  2. Anderson, R. M., & May, R. M. (1979). Population biology of infectious diseases: Part I. Nature, 280(2), 361–367.CrossRefGoogle Scholar
  3. Anselin, L. (1995). Local indicators of spatial association-LISA. Geographical Analysis, 27(2), 93–115.CrossRefGoogle Scholar
  4. Ard, K. (2015). Trends in exposure to industrial air toxins for different racial and socioeconomic groups: A spatial and temporal examination of environmental inequality in the U.S. from 1995 to 2004. Social Science Research, 53, 375–390. doi: 10.1016/j.ssresearch.2015.06.019.CrossRefGoogle Scholar
  5. Baddeley, A., & Turner, R. (2005). Spatstat: An R package for analyzing spatial point patterns. Journal of Statistical Software, 12(6), 1–42.CrossRefGoogle Scholar
  6. Balcan, D., Colizza, V., Gonçalves, B., Hu, H., Ramasco, J. J., & Vespignani, A. (2009). Multiscale mobility networks and the spatial spreading of infectious diseases. Proceedings of the National Academy of Sciences, 106(51), 21484–21489.CrossRefGoogle Scholar
  7. Barrett, M. A., Humblet, O., Hiatt, R. A., & Adler, N. E. (2013). Big data and disease prevention: From quantified self to quantified communities. Big Data, 1(3), 168–175.CrossRefGoogle Scholar
  8. Bernardinelli, L., Clayton, D., Pascutto, C., Montomoli, C., Ghislandi, M., & Songini, M. (1995). Bayesian analysis of space–time variation in disease risk. Statistics in Medicine, 14(21–22), 2433–2443.CrossRefGoogle Scholar
  9. Bharti, A. R., Nally, J. E., Ricaldi, J. N., Matthias, M. A., Diaz, M. M., Lovett, M. A., et al. (2003). Leptospirosis: A zoonotic disease of global importance. The Lancet Infectious Diseases, 3(12), 757–771.CrossRefGoogle Scholar
  10. Bishop, C. (2006). Pattern recognition and machine learning (information science and statistics). New York, NY: Springer.Google Scholar
  11. Boots, B. (2003). Developing local measure of spatial association for categorical data. Journal of Geographical Systems, 5(2), 139–160.CrossRefGoogle Scholar
  12. Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. Belmont, CA: Wadsworth.Google Scholar
  13. Brownstein, J. S., Freifeld, C. C., Reis, B. Y., & Mandl, K. D. (2008). Surveillance Sans Frontières: Internet-based emerging infectious disease intelligence and the HealthMap project. PLoS Medicine, 5(7), e151.CrossRefGoogle Scholar
  14. Brownstein, J. S., Freifeld, C. C., & Madoff, L. C. (2009). Digital disease detection—Harnessing the web for public health surveillance. New England Journal of Medicine, 360(21), 2153–2157.CrossRefGoogle Scholar
  15. Brunsdon, C., Fotheringham, A. S., & Charlton, M. (1996). Geographically weighted regression: A method for exploring spatial nonstationarity. Geographical Analysis, 28(4), 281–298.CrossRefGoogle Scholar
  16. Claude, B., Perrin, D., & Ruskin, H. J. (2009). Considerations for a social and geographical framework for agent-based epidemics. In International conference on computational aspects of social networks, 2009. CASON’09 (pp. 149–154).Google Scholar
  17. Coker, R., Rushton, J., Mounier-Jack, S., Karimuribo, E., Lutumba, P., Kambarage, D., et al. (2011). Towards a conceptual framework to support one-health research for policy on emerging zoonoses. The Lancet Infectious Diseases, 11(4), 326–331.CrossRefGoogle Scholar
  18. Couclelis, H. (1998). Geocomputation in context. In P. A. Longely, S. M. Brooks, R. McDonnell, & B. McMillan (Eds.), Geocomputation: A primer (pp. 17–30). West Sussex, UK: Wiley.Google Scholar
  19. Cressie, N. (1991). Statistics for spatial data. Toronto: Wiley.Google Scholar
  20. Cressie, N., & Wikle, C. K. (2011). Statistics for spatio-temporal data. Toronto: Wiley.Google Scholar
  21. Cromley, E. K. (2003). GIS and disease. Annual Review of Public Health, 24(1), 7–24.CrossRefGoogle Scholar
  22. Dale, M. R. T., & Fortin, M.-J. (2010). From graphs to spatial graphs. Annual Review of Ecology Evolution and Systematics, 41(1), 21–38.CrossRefGoogle Scholar
  23. Diggle, P. (2003). Statistical analysis of spatial point patterns. London: Academic Press.Google Scholar
  24. Estabrooks, C. A., Thompson, D. S., Lovely, J. J. E., & Hofmeyer, A. (2006). A guide to knowledge translation theory. Journal of Continuing Education in the Health Professions, 26(1), 25–36.CrossRefGoogle Scholar
  25. Field, H., Young, P., Yob, J. M., Mills, J., Hall, L., & Mackenzie, J. (2001). The natural history of Hendra and Nipah viruses. Microbes and Infection, 3(4), 307–314.CrossRefGoogle Scholar
  26. Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographically weighted regression: The analysis of spatially varying relationships. London: Wiley.Google Scholar
  27. Freier, J. E., Miller, R. S., & Geter, K. D. (2007). Geospatial analysis and modelling in the prevention and control of animal diseases in the United States. Special Issue. Geographic Information Systems, 43(3), 549–557.Google Scholar
  28. Freifeld, C. C., Chunara, R., Mekaru, S. R., Chan, E. H., Kass-Hout, T., Iacucci, A. A., et al. (2010). Participatory epidemiology: Use of mobile phones for community-based health reporting. PLoS Medicine, 7(12), e1000376.CrossRefGoogle Scholar
  29. Fritz, C. E., Schuurman, N., Robertson, C., & Lear, S. (2013). A scoping review of spatial cluster analysis techniques for point-event data. Geospatial Health, 7(2), 183.CrossRefGoogle Scholar
  30. Gahegan, M. (2000). On the application of inductive machine learning tools to geographical analysis. Geographical Analysis, 32(1), 113–139.Google Scholar
  31. Gamage, C. D., Yasuda, S. P., & Nishio, S. (2011). Serological evidence of Thailand virus-related hantavirus infection among suspected leptospirosis patients in Kandy, Sri Lanka. Japanese Journal of Infectious Diseases, 64(1), 72–75.Google Scholar
  32. Gerber, P., Chilonda, P., Franceschini, G., & Menzi, H. (2005). Geographical determinants and environmental implications of livestock production intensification in Asia. Bioresource Technology, 96(2), 263–276.CrossRefGoogle Scholar
  33. Getis, A., & Ord, J. K. (1992). The analysis of spatial association by use of distance statistics. Geographical Analysis, 24(3), 189–206.CrossRefGoogle Scholar
  34. Graham, J. P., Leibler, J. H., Price, L. B., Otte, J. M., Pfeiffer, D. U., Tiensin, T., et al. (2008). The animal–human interface and infectious disease in industrial food animal production: Rethinking biosecurity and biocontainment. Public Health Reports, 123(3), 282–299.CrossRefGoogle Scholar
  35. Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., et al. (2006). A standard protocol for describing individual-based and agent-based models. Ecological Modelling, 198(1–2), 115–126.CrossRefGoogle Scholar
  36. Grogan, L. F., Berger, L., Rose, K., Grillo, V., Cashins, S. D., & Skerratt, L. F. (2014). Surveillance for emerging biodiversity diseases of wildlife. PLoS Pathogens, 10(5), e1004015.CrossRefGoogle Scholar
  37. Hastie, T. J., & Tibshirani, R. J. (1990). Generalized additive models. USA: CRC Press.Google Scholar
  38. Haynes, K. E., & Fotheringham, S. (1984). Gravity and spatial interaction models. Beverly Hills, CA: Sage.Google Scholar
  39. Hulth, A., Rydevik, G., & Linde, A. (2009). Web queries as a source for syndromic surveillance. PLoS ONE, 4(2), e4378.CrossRefGoogle Scholar
  40. Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L., et al. (2008). Global trends in emerging infectious diseases. Nature, 451(7181), 990–993.CrossRefGoogle Scholar
  41. Karesh, W. B., Cook, R. A., Bennett, E. L., & Newcomb, J. (2005). Wildlife trade and global disease emergence. Emerging Infectious Diseases, 11(7), 1000–1002.CrossRefGoogle Scholar
  42. Kearns, R. A. (1993). Place and health: Towards a reformed medical geography*. The Professional Geographer, 45(2), 139–147.CrossRefGoogle Scholar
  43. Kearns, R., & Moon, G. (2002). From medical to health geography: Novelty, place and theory after a decade of change. Progress in Human Geography, 26(5), 605–625.CrossRefGoogle Scholar
  44. Kelegama, S. (2010). Managing food price inflation in Sri Lanka. In S. Ahmed & H. G. P. Jansen (Eds.), Managing food price inflation in South Asia (p. 290). Washington, DC: World Bank.Google Scholar
  45. Khan, K., Arino, J., Hu, W., Raposo, P., Sears, J., Calderon, F., et al. (2009). Spread of a novel influenza A (H1N1) virus via global airline transportation. New England Journal of Medicine, 361(2), 212–214.CrossRefGoogle Scholar
  46. Kienberger, S., & Hagenlocher, M. (2014). Spatial-explicit modeling of social vulnerability to malaria in East Africa. International Journal of Health Geographics, 13(1), 29.CrossRefGoogle Scholar
  47. Kulldorff, M., & Nagarwalla, N. (1995). Spatial disease clusters: Detection and inference. Statistics in Medicine, 14(8), 799–810.CrossRefGoogle Scholar
  48. Kwan, M.-P. (2013). Beyond space (as we knew it): Toward temporally integrated geographies of segregation, health, and accessibility. Annals of the Association of American Geographers, 103(5), 1078–1086.CrossRefGoogle Scholar
  49. Lai, P.-C., So, F.-M., & Chan, K.-W. (2008). Spatial epidemiological approaches in disease mapping and analysis. Boca Raton, FL: CRC Press.Google Scholar
  50. Lambin, E. F., Tran, A., Vanwambeke, S. O., Linard, C., & Soti, V. (2010). Pathogenic landscapes: Interactions between land, people, disease vectors, and their animal hosts. International Journal of Health Geographics, 9(1), 54.CrossRefGoogle Scholar
  51. Lash, R. R., Brunsell, N. A., & Peterson, A. T. (2008). Spatiotemporal environmental triggers of Ebola and Marburg virus transmission. Geocarto International, 23(6), 451–466.CrossRefGoogle Scholar
  52. Lawson, A. B. (2008). Bayesian disease mapping: Hierarchical modeling in spatial epidemiology (1st ed.). London: Chapman and Hall/CRC.CrossRefGoogle Scholar
  53. Leidner, J. L. (2008). Toponym resolution in text: Annotation, evaluation and applications of spatial grounding of place names. Universal-Publishers.Google Scholar
  54. Lengeler, C., Armstrong‐Schellenberg, J., D'Alessandro, U., Binka, F., & Cattani, J. (1998). Relative versus absolute risk of dying reduction after using insecticide-treated nets for malaria control in Africa. Tropical Medicine and International Health, 3(4), 286–290.CrossRefGoogle Scholar
  55. Levin, S. A. (1998). Ecosystems and the biosphere as complex adaptive systems. Ecosystems, 1(5), 431–436.CrossRefGoogle Scholar
  56. Long, J. A., Nelson, T. A., & Wulder, M. A. (2010). Local indicators for categorical data: Impacts of scaling decisions. Canadian Geographer/Le Géographe Canadien, 54(1), 15–28.CrossRefGoogle Scholar
  57. Merler, S., Ajelli, M., Fumanelli, L., Gomes, M. F., y Piontti, A. P., Rossi, L., et al. (2015). Spatiotemporal spread of the 2014 outbreak of Ebola virus disease in Liberia and the effectiveness of non-pharmaceutical interventions: a computational modelling analysis. The Lancet Infectious Diseases, 15(2), 204–211.CrossRefGoogle Scholar
  58. Murray, C. J. L., Vos, T., Lozano, R., Naghavi, M., Flaxman, A. D., Michaud, C., et al. (2012). Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. The Lancet, 380(9859), 2197–2223.CrossRefGoogle Scholar
  59. Nychka, D., Furrer, R., & Sain, S. (2015). Tools for spatial data. http://CRAN.R-project.org/package=fields. Accessed 24 March 2015.
  60. O’Neillr, R. V., Krummel, J. R., Gardner, R. H., Sugihara, G., Jackson, B., & DeAngelist, D. L., et al. (1988). Indices of landscape pattern. Landscape Ecology, 1(3), 153–162.CrossRefGoogle Scholar
  61. Openshaw, S. (2014). Geocomputation. In R. J. Abrahart & L. M. See (Eds.), GeoComputation. London: CRC Press.CrossRefGoogle Scholar
  62. Pavlovsky, E. N. (1966). In N. D. Levine (Ed.), Natural nidality of transmissible diseases with special reference to the landscape epidemiology of zooanthroponoses. Urbana, IL: University of Illinois Press.Google Scholar
  63. Pfeifer, B., Kugler, K., Tejada, M. M., Baumgartner, C., Seger, M., Osl, M., et al. (2008). A cellular automaton framework for infectious disease spread simulation. The Open Medical Informatics Journal, 2, 70–81.CrossRefGoogle Scholar
  64. Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259.CrossRefGoogle Scholar
  65. Plouffe, C. C. F., Robertson, C., & Chandrapala, L. (2015). Comparing interpolation techniques for monthly rainfall mapping using multiple evaluation criteria and auxiliary data sources: A case study of Sri Lanka. Environmental Modelling and Software, 67, 57–71.CrossRefGoogle Scholar
  66. Railsback, S. F., & Grimm, V. (2011). Agent-based and individual-based modeling: A practical introduction. Princeton: Princeton University Press.Google Scholar
  67. Riley, S. (2007). Large-scale spatial-transmission models of infectious disease. Science, 316(5829), 1298–1301.CrossRefGoogle Scholar
  68. Riley, S., Eames, K., Isham, V., Mollison, D., & Trapman, P. (2015). Five challenges for spatial epidemic models. Epidemics, 10(5829), 68–71.CrossRefGoogle Scholar
  69. Robertson, C., Nelson, T. A., MacNab, Y. C., & Lawson, A. B. (2010). Review of methods for space–time disease surveillance. Spatial and Spatio-Temporal Epidemiology, 1(2), 105–116.CrossRefGoogle Scholar
  70. Robertson, C., Nelson, T. A., & Stephen, C. (2012). Spatial epidemiology of suspected clinical leptospirosis in Sri Lanka. Epidemiology and Infection, 140(4), 731–743.CrossRefGoogle Scholar
  71. Robertson, C., Long, J. A., Nathoo, F. S., Nelson, T. A., & Plouffe, C. C. (2014). Assessing quality of spatial models using the structural similarity index and posterior predictive checks. Geographical Analysis, 46(1), 53–74.CrossRefGoogle Scholar
  72. Rytkönen, M. J. P. (2004). Not all maps are equal: GIS and spatial analysis in epidemiology. International Journal of Circumpolar Health, 63(1), 9–24.CrossRefGoogle Scholar
  73. Scott, J. (2012). Social network analysis. London: Sage.Google Scholar
  74. Shankardass, K. (2012). Place-based stress and chronic disease: A systems view of environmental determinants. In P. O’Campo & J. R. Dunn (Eds.), Rethinking social epidemiology (pp. 113–136). Netherlands: Springer.CrossRefGoogle Scholar
  75. Signorini, A., Segre, A. M., & Polgreen, P. M. (2011). The use of twitter to track levels of disease activity and public concern in the U.S. during the influenza A H1N1 pandemic. PLoS ONE, 6(5), e19467.CrossRefGoogle Scholar
  76. Stephen, C. (2014). Toward a modernized definition of wildlife health. Journal of Wildlife Diseases, 50(3), 427–430.CrossRefGoogle Scholar
  77. Straus, S. E., Tetroe, J. M., & Graham, I. D. (2011). Knowledge translation is the use of knowledge in health care decision making. Journal of Clinical Epidemiology, 64(1), 6–10.CrossRefGoogle Scholar
  78. Sunil-Chandra, N. P., Clement, J., Maes, P., De Silva, H. J., Van Esbroeck, M., & Van Ranst, M. (2015). Concomitant leptospirosis-hantavirus co-infection in acute patients hospitalized in Sri Lanka: Implications for a potentially worldwide underestimated problem. Epidemiology & Infection FirstView, 1–13.Google Scholar
  79. Tatem, A. J. (2014). Mapping population and pathogen movements. International Health, 6(1), 5–11.CrossRefGoogle Scholar
  80. Torrens, P. (2010). Geography and computational social science. GeoJournal, 75(2), 133–148.CrossRefGoogle Scholar
  81. Vitolo, C., Elkhatib, Y., Reusser, D., Macleod, C. J., & Buytaert, W. (2015). Web technologies for environmental big data. Environmental Modelling and Software, 63, 185–198.CrossRefGoogle Scholar
  82. Waltner-Toews, D., Kay, J. J., & Lister, N.-M. E. (2008). The ecosystem approach: Complexity, uncertainty, and managing for sustainability. New York, NY: Columbia University Press.Google Scholar
  83. Wang, L.-F., & Eaton, B. T. (2007). Bats, civets and the emergence of SARS. In S. R. S. J. E. Childs, P. J. S. Mackenzie, & V. M. O. J. A. Richt (Eds.), Wildlife and emerging zoonotic diseases: The biology, circumstances and consequences of cross-species transmission. Current topics in microbiology and immunology (pp. 325–344). Berlin: Springer.Google Scholar
  84. Wang, F. H., & Luo, W. (2005). Assessing spatial and nonspatial factors for healthcare access: Towards an integrated approach to defining health professional shortage areas. Health and Place, 11(2), 131–146.CrossRefGoogle Scholar
  85. Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P., et al. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.CrossRefGoogle Scholar
  86. Ward, M. P., Laffan, S. W., & Highfield, L. D. (2009). Modelling spread of foot-and-mouth disease in wild white-tailed deer and feral pig populations using a geographic-automata model and animal distributions. Preventive Veterinary Medicine, 91(1), 55–63.CrossRefGoogle Scholar
  87. Weiss, R. A., & McMichael, A. J. (2004). Social and environmental risk factors in the emergence of infectious diseases. Nature Medicine, 10, S70–S76.CrossRefGoogle Scholar
  88. Wilkinson, R. G. (1994). The epidemiological transition: From material scarcity to social disadvantage? Daedalus, 123(4), 61–77.Google Scholar
  89. World Health Organization. (2005). International health regulations. Geneva: World Health Organization. http://whqlibdoc.who.int/publications/2008/9789241580410_eng.pdf.
  90. World Health Organization. (2014). Early detection, assessment and response to acute public health events: Implementation of early warning and response with a focus on event-based surveillance. Geneva: World Health Organization. http://apps.who.int/iris/bitstream/10665/112667/1/WHO_HSE_GCR_LYO_2014.4_eng.pdf.
  91. Wu, J. (2004). Effects of changing scale on landscape pattern analysis: Scaling relations. Landscape Ecology, 19(2), 125–138.CrossRefGoogle Scholar
  92. Yang, T.-C., Shoff, C., & Noah, A. J. (2013). Spatializing health research: What we know and where we are heading. Geospatial Health, 7(2), 161–168.CrossRefGoogle Scholar
  93. Young, S. G. (2013). Landscape epidemiology and machine learning: A geospatial approach to modeling West Nile virus risk in the United States. Ph.D. Thesis, p. 5.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Geography and Environmental StudiesWilfrid Laurier UniversityWaterlooCanada

Personalised recommendations