, Volume 81, Issue 5, pp 699–716 | Cite as

Geocrowdsourcing and accessibility for dynamic environments

  • Han Qin
  • Rebecca M. Rice
  • Sven Fuhrmann
  • Matthew T. Rice
  • Kevin M. Curtin
  • Eric Ong


A consequence of modern society’s increasing reliance on digital communication is the concurrent multiplication and narrowing of information streams, with many channels of digital information, but channels which are difficult or impossible for some individuals to access. Blind and visually-impaired individuals are often left out of this communication, unless accommodations are carefully planned and made to present the information in a usable form. The context of this research is the realm of assistive geotechnology, where web mapping technology and geographic information systems are used to provide access to enabling information and services. This paper presents research on the development of tools to provide transient obstacle information to blind, visually-impaired, and mobility-impaired individuals through crowdsourcing, and research on the general accessibility of local pedestrian networks under constraints presented by transient and permanent navigation obstacles. We discuss the social and technological dynamics associated with the creation and use of our crowdsourcing system and present our effort for comprehensive quality assessment. We conclude that crowdsourcing is a crucial technique for successful deployment of assistive geotechnology, particularly those that involve navigation, wayfinding, and travel in public space. We find that many public health services and other important resources cannot be accessed dependably without the use of crowdsourcing and other techniques for capturing dynamic, changing environmental conditions. More broadly, this paper concludes by addressing the progression of user-generated and crowdsourced content from static data contributions to dynamic place-based services and the enabling role of assistive geotechnology in providing access and help to blind, visually-impaired, and mobility-impaired individuals.


Assistive geotechnology Crowdsourcing Public health Wayfinding Quality assessment Accessibility 


  1. Aburizaiza, A.O., & Rice, M.T. (2011). VGI and Geotechnology for supporting blind and vision-impaired people using a localized gazetteer”, FOSS4G: Free and Open Source Software for Geospatial, 2011, Sheraton Denver Downtown, Denver, Colorado. Academic track—Spruce room, September 16, 2011.Google Scholar
  2. ADA Standards for Accessible Design (2010). Information and Technical Assistance on the Americans with Disabilities Act: ADA Standards for Accessible Design. Accessed 25 May 2014.
  3. Archer, K. (2014) Many silver line riders have no way to safely reach their offices. Blog. Greater Greater Washington, July 29, 2014.
  4. Archer, K. (2014). The South Side of Tysons Boulevard and Galleria Drive. JPEG image, July 29, 2014.
  5. Avila, K. (2014). The experiences of pedestrians with visual impairments in a metropolitan setting: An ethnographic inquiry. In Proceedings, Biannual International Conference of the Association for Education and Rehabilitation for the Blind and Visually Impaired. Presented at the Biannual International Conference of the Association for Education and Rehabilitation for the Blind and Visually Impaired, San Antonio, TX.Google Scholar
  6. Barbeau, S. J., Winters, P. L., Georggi, N. L., Labrador, M. A., & Perez, R. (2010). Travel assistance device: utilising global positioning system-enabled mobile phones to aid transit riders with special needs. Intelligent Transport Systems, IET, 4(1), 12–23. Accessed 30 July 2012.Google Scholar
  7. Beale, L., Field, K., Briggs, D., Picton, P., & Matthews, H. (2006). Mapping for wheelchair users: Route navigation in urban spaces. The Cartographic Journal, 43(1), 68–81.CrossRefGoogle Scholar
  8. Chen, M., Lin, H., Liu, D., Zhang, H., & Yue, S. (2015). An object-oriented data model built for blind navigation in outdoor space. Applied Geography, 60, 84–94.
  9. Chen, M., Lin, H., Lu, G., He, L., & Wen, Y. (2011). A spatial-temporal framework for historical and cultural research on China. Applied Geography, 31(3), 1059–1074.
  10. Church, R. L. (2002). Geographical information systems and location science. Computers & Operations Research, 29(6), 541–562.CrossRefGoogle Scholar
  11. Church, R. L., & Marston, J. R. (2003). Measuring accessibility for people with a disability. Geographical Analysis, 35(1), 83–96.CrossRefGoogle Scholar
  12. Cinnamon, J., & Schuurman, N. (2013). Confronting the data-divide in a time of spatial turns and volunteered geographic information. GeoJournal, 78(4), 657–674. doi:10.1007/s10708-012-9458-6.CrossRefGoogle Scholar
  13. Coulsen, M., Riger, M., & Wheate, R. (1991). Progress in creating tactile maps from Geographic Information Systems output. In Mapping the Nations, 15th Conference and 9th General Assembly (Vol. 1). Presented at the International Cartographic Conference, Bournemouth, UK.Google Scholar
  14. Curtin, K. M., Hayslett-McCall, K., & Qiu, F. (2005). Determining optimal police patrol areas with maximal covering and backup covering location models. Networks and Spatial Economics, 10(1), 125–145.CrossRefGoogle Scholar
  15. Elwood, S. (2008). Volunteered geographic information: key questions, concepts and methods to guide emerging research and practice. GeoJournal, 72(3–4), 133–135. doi:10.1007/s10708-008-9187-z.CrossRefGoogle Scholar
  16. Elwood, S., Goodchild, M. F., & Sui, D. Z. (2012). Researching volunteered geographic information: Spatial data, geographic research, and new social practice. Annals of the Association of American Geographers, 102(3), 571–590. doi:10.1080/00045608.2011.595657.CrossRefGoogle Scholar
  17. Elwood, S., Goodchild, M. F., & Sui, D. (2013). Prospects for VGI research and the emerging fourth paradigm. In D. Sui, S. Elwood, & M. F. Goodchild (Eds.), Crowdsourcing Geographic Knowledge (pp. 361–375). Dordrecht: Springer Netherlands. Retrieved from
  18. Eriksson, Y. (2001). How to make tactile maps discriminable to touch. In Proceedings of the 20th International Cartography Conference (pp. 2914–2922). Beijing, China.Google Scholar
  19. Garreau, J. (1991). Edge cities: Life on the new frontier. New York: Doubleday.Google Scholar
  20. Girres, J. F., & Touya, G. (2010). Quality assessment of the French OpenStreetMap dataset. Transactions in GIS, 14(4), 435–459. doi:10.1111/j.1467-9671.2010.01203.x.CrossRefGoogle Scholar
  21. Golledge, R. G., (1999). Wayfinding behavior: Cognitive mapping and other spatial processes. JHU Press.Google Scholar
  22. Golledge, R. G. (2001) Convocation address, Simon Fraser University, 6 June 2001.Google Scholar
  23. Golledge, R. G., Jacobson, R. D., Kitchin, R., & Blades, M. (2000). Cognitive maps, spatial abilities, and human wayfinding. Geographical Review of Japan Series B, 73(2), 93–104.CrossRefGoogle Scholar
  24. Goodchild, M. F. (2007). Citizens as sensors: The world of volunteered geography. GeoJournal, 69(4), 211–221.CrossRefGoogle Scholar
  25. Goodchild, M. F. (2009). NeoGeography and the nature of geographic expertise. Journal of Location Based Services, 3(2), 82–96. doi:10.1080/17489720902950374.CrossRefGoogle Scholar
  26. Goodchild, M. F., & Gopal, S. (1989). The Accuracy of spatial databases. London; New York: Taylor & Francis.Google Scholar
  27. Goodchild, M. F., & Li, L. (2012). Assuring the quality of volunteered geographic information. Spatial Statistics, 1, 110–120. doi:10.1016/j.spasta.2012.03.002.CrossRefGoogle Scholar
  28. Guptill, S. C., & Morrison, J. L. (1995). Elements of spatial data quality (Vol. 202). Elsevier Science Oxford.Google Scholar
  29. Haklay, M. (2010). How good is volunteered geographical information? A comparative study of OpenStreetMap and ordnance survey datasets. Environment and Planning. B, Planning & design, 37(4), 682. Accessed 5 Aug 2014.Google Scholar
  30. Haklay, M., Basiouka, S., Antoniou, V., & Ather, A. (2010). How many volunteers does it take to map an area well? The validity of Linus’ law to volunteered geographic information. The Cartographic Journal, 47(4), 315–322. doi:10.1179/000870410X12911304958827.CrossRefGoogle Scholar
  31. Hunter, G. J., & Beard, K. (1992). Understanding error in spatial databases. Australian Surveyor, 37(2), 108–119.CrossRefGoogle Scholar
  32. Jacobson, R. D. (1998). Cognitive mapping without sight: Four preliminary studies of spatial learning. Journal of Environmental Psychology, 18(3), 289–305.CrossRefGoogle Scholar
  33. Karimi, H. A., & Kasemsuppakorn, P. (2013). Pedestrian network map generation approaches and recommendation. International Journal of Geographical Information Science, 27(5), 947–962.CrossRefGoogle Scholar
  34. Karimi, H. A., Zhang, L., & Benner, J. G. (2014). Personalized accessibility map (PAM): A novel assisted wayfinding approach for people with disabilities. Annals of GIS, 20(2), 99–108. doi:10.1080/19475683.2014.904438.CrossRefGoogle Scholar
  35. Kasemsuppakorn, P., & Karimi, H. A. (2009). Personalised routing for wheelchair navigation. Journal of Location Based Services, 3(1), 24–54.CrossRefGoogle Scholar
  36. Kulyukin, V. A., Nicholson, J., Ross, D. A., Marston, J. R., & Gaunet, F. (2008). The blind leading the blind: Toward collaborative online route information management by individuals with visual impairments. In AAAI Spring Symposium: Social Information Processing (pp. 54–59).Google Scholar
  37. Laakso, M., Sarjakoski, T., Lehto, L., & Sarjakoski, L. T. (2013). An information model for pedestrian routing and navigation databases supporting universal accessibility. Cartographica: The International Journal for Geographic Information and Geovisualization, 48(2), 89–99.CrossRefGoogle Scholar
  38. Laakso, M., Sarjakoski, T., & Sarjakoski, L. T. (2011). Improving accessibility information in pedestrian maps and databases. Cartographica: The International Journal for Geographic Information and Geovisualization, 46(2), 101–108.Google Scholar
  39. Loomis, J. M., Golledge, R. G., & Klatzky, R. L. (2001). GPS-based navigation systems for the visually impaired. Fundamentals of wearable computers and augmented reality (pp. 429–446). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  40. Loomis, J. M., Marston, J. R., Golledge, R. G., & Klatzky, R. L. (2005). Personal guidance system for people with visual impairment: A comparison of spatial displays for route guidance. Journal of Visual Impairment & Blindness, 99(4), 219.Google Scholar
  41. Marston, J. R., Loomis, J. M., Klatzky, R. L., Golledge, R. G., & Smith, E. L. (2006). Evaluation of spatial displays for navigation without sight. ACM Transactions on Applied Perception, 3(2), 110–124. doi:10.1145/1141897.1141900.CrossRefGoogle Scholar
  42. Miele, J. A. (2007). Automated creation and detailed annotation of audio/tactile maps using scalable vector graphics (SVG). Presented at the International Cartographic Conference, Moscow, Russia.Google Scholar
  43. Miele, J. A. (2011). Tactile map automated production (TMAP): Using GIS data to automatically generate raised-line street maps.
  44. Miele, J. A., & Gilden, D. B. (2004). Tactile map automated production (TMAP): Using GIS data to generate Braile maps. In Proceedings of the CSUN International Conference on Technology and Persons with Disabilities. Presented at the International Conference on Technology and Persons with Disabilities, Los Angeles, CA.Google Scholar
  45. Miele, J. A., & Marston, J. R. (2005). Tactile map automated production (TMAP): Project update and research summary. In Proceedings of the CSUN 20th Annual International Conference. Presented at the International Conference on Technology and Persons with Disabilities, Los Angeles, CA.Google Scholar
  46. Nuernberger, A. (2008). Presenting accessibility to mobility-impaired travelers (UCTC Dissertation). Santa Barbara, CA: University of California Transportation Center.Google Scholar
  47. Paez, F. I. (2014). Recruitment, training, and social dynamics in geo-crowdsourcing for accessibility (Master of Science). Fairfax, VA: George Mason University.Google Scholar
  48. Pease, P. A. (2014). The influence of training on position and attribute accuracy in vgi (master of science). Fairfax, VA: George Mason University.Google Scholar
  49. Perkins, C. (2001). Tactile campus mapping: Evaluation designs and production technologies. In Proceedings, The 20th International Cartographic Conference (Vol. 5, pp. 2906–15). Presented at the International Cartographic Conference, ICC2001, Beijing, China.Google Scholar
  50. Pinhel accessibility platform, accesible paths in pinhel. Accessed Nov 21 2014.
  51. Rice, M. T., Aburizaiza, A. O., Jacobson, R. D., Shore, B. M., & Paez, F. I. (2012a). Supporting accessibility for blind and vision-impaired people with a localized gazetteer and open source geotechnology. Transactions in GIS, 16(2), 177–190. doi:10.1111/j.1467-9671.2012.01318.x.CrossRefGoogle Scholar
  52. Rice, M. T., Curtin, K. M., Paez, F. I., Seitz, C. R., & Qin, H. (2013a). Crowdsourcing to Support Navigation for the Disabled: A Report on the Motivations, Design, Creation and Assessment of a Testbed Environment for Accessibility (US Army Corps of Engineers, Engineer Research and Development Center, US Army Topographic Engineering Center Technical Report, Data Level Enterprise Tools Workgroup No. BAA: #AA10-4733, Contract: # W9132 V-11-P-0011) (pp. 1–62). Fairfax, VA: George Mason University. Retrieved from
  53. Rice, M. T., Hammill, W. C., Aburizaiza, A. O., Schwarz, S., & Jacobson, R. D. (2011). Integrating user-contributed geospatial data with assistive geotechnology using a localized Gazetteer. In A. Ruas (Ed.), Advances in Cartography and GIScience. Volume 1 (pp. 279–291). Berlin Heidelberg:Springer. Retrieved from
  54. Rice, M. T., Jacobson, R. D., Caldwell, D. R., McDermott, S. D., Paez, F. I., Aburizaiza, A. O., et al. (2013b). Crowdsourcing techniques for augmenting traditional accessibility maps with transitory obstacle information. Cartography and Geographic Information Science, 40(3), 210–219. doi:10.1080/15230406.2013.799737.CrossRefGoogle Scholar
  55. Rice, M., Jacobson, R. D., Golledge, R. G., & Jones, D. (2005). Design considerations for haptic and auditory map interfaces. Cartography and Geographic Information Science, 32(4), 381–391.CrossRefGoogle Scholar
  56. Rice, M. T., Paez, F. I., Mulhollen, A. P., Shore, B. M., & Caldwell, D. R. (2012b). Crowdsourced geospatial data: A report on the emerging phenomena of crowdsourced and user-generated geospatial data (Annual No. AA10-4733). Fairfax, VA: George Mason University. Retrieved from
  57. Rice, M. T., Paez, F. I., Rice, R. M., Ong, E. W., Qin, H., Seitz, C. R., Fayne, J. V., Curtin, K. M., Fuhrmann, S., Pfoser, D., Medina, R. M. (2014). Quality Assessment and Accessibility Applications of Crowdsourced Geospatial Data: A report on the development and extension of the George Mason University (GMU) Geocrowdsourcing Testbed, pp. 1-91. BAA: #AA10-4733, Contract: # W9132 V-11-P-0011, “Assessing the Value of Neo-Geographic Information”. September 2014.
  58. Ruitton-Allinieu, A.M. (2011). Crowdsourcing of Geoinformation: Data quality and possible applications (Master of Science). Aalto University. Espoo, Finland.
  59. Sui, D., Elwood, S., & Goodchild, M. F. (Eds.). (2013). Crowdsourcing geographic knowledge volunteered geographic information (VGI) in theory and practice. New York: Springer.Google Scholar
  60. Tatham, A. F. (1991). The design of tactile maps: Theoretical and practical considerations. In Mapping the Nations: Proceedings, 15th Conference and 9th General Assembly of the International Cartographic Association (Vol. 1, pp. 157–166). Presented at the International Cartographic Conference, ICC 1991, Bournemouth, UK.Google Scholar
  61. Veregin, H. (1999). Data quality parameters. Geographical Information Systems, 1, 177–189.Google Scholar
  62. Williams, M. A., Hurst, A., Kane, S. K., (2013) “Pray before you step out”: Describing personal and situational blind navigation behaviors In Proceedings of the 15th International ACM SIGACCESS Conference on Computers and Accessibility (pp. 1–8). Bellevue, Washington:ACM.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Han Qin
    • 1
  • Rebecca M. Rice
    • 1
  • Sven Fuhrmann
    • 1
  • Matthew T. Rice
    • 1
  • Kevin M. Curtin
    • 1
  • Eric Ong
    • 1
  1. 1.George Mason UniversityFairfaxUSA

Personalised recommendations