Skip to main content

Advertisement

Log in

Assessing impact of urban impervious surface on watershed hydrology using distributed object-oriented simulation and spatial regression

  • Published:
GeoJournal Aims and scope Submit manuscript

Abstract

In this study, we investigated the relationship between watershed characteristics and hydrology using high spatial resolution impervious surface area (ISA), hydrologic simulations and spatial regression. We selected 20 watersheds at HUC 12 level with different degrees of urbanization and performed hydrologic simulation using a distributed object-oriented rainfall and runoff simulation model. We extracted the discharge per area and ratio of runoff to base flow from simulation results and used them as indicators of hydrology pattern. We derived percentage of ISA, distance from ISA to streams, and stream density as the watershed characteristics to evaluate the relationship with hydrology pattern in watersheds using ordinary least square, spatial error and spatial lag regression models. The comparison indicates that spatial lag regression model can achieve better performance for the evaluation of relationship between ratio of runoff to base flow and watershed characteristics, and that three models provide similar performance for the evaluation of relationship between discharge per area and watershed characteristics. The results from regression analyses demonstrate that ISA plays an important role in watershed hydrology. Ignorance of spatial dependence in analyses will likely cause inaccurate evaluation for relationship between ISA and watershed hydrology. The hydrologic model, regression methods and relationships between watershed characteristics and hydrology pattern provide important tools and information for decision makers to evaluate the effect of different scenarios in land management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguiar, A. P. D., Câmara, G., & Escada, M. I. S. (2007). Spatial statistical analysis of land-use determinants in the Brazilian Amazonia: Exploring intra-regional heterogeneity. Ecological Modelling, 209(2–4), 169–188.

    Article  Google Scholar 

  • Anselin, L., Syabri, I., & Kho, Y. (2006). GeoDa: An introduction to spatial data analysis. Geographical Analysis, 38(1), 5–22.

    Article  Google Scholar 

  • Arnold, C. A, Jr, & Gibbons, C. J. (1996). Impervious surface coverage: the emergence of a key urban environmental indicator. Journal of the American Planning Association, 62(2), 243–258.

    Article  Google Scholar 

  • Booth, D. B., & Jackson, C. R. (1997). Urbanization of aquatic systems: degradation thresholds, stormwater detection, and the limits of mitigation. Journal of the American Water Resources Association, 33(5), 1077–1090.

    Article  Google Scholar 

  • Brun, S. E., & Band, L. E. (2000). Simulating runoff behavior in an urbanizing watershed. Computers, Environment and Urban Systems, 24(1), 5–22.

    Article  Google Scholar 

  • De Roo, A., Odijk, M., Schmuck, G., Koster, E., & Lucieer, A. (2001). Assessing the effects of land use changes on floods in the meuse and oder catchment. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26(7), 593–599.

    Article  Google Scholar 

  • Dougherty, M., Dymond, R. L., Grizzard, T. J., Godrej, A. N., Zipper, C. E., & Randolph, J. (2007). Quantifying long-term hydrologic response in an urbanizing basin. Journal of Hydrologic Engineering, 12(1), 33–41.

    Article  Google Scholar 

  • Dunn, S. M., & Mackay, R. (1995). Spatial variation in evapotranspiration and the influence of land use on catchment hydrology. Journal of Hydrology, 171(1–2), 49–73.

    Article  Google Scholar 

  • Fohrer, N., Haverkamp, S., Eckhardt, K., & Frede, H. (2001). Hydrologic response to land use changes on the catchment scale. Physics and Chemistry of the Earth (B), 26(7–8), 577–582.

    Article  Google Scholar 

  • Harbor, J. M. (1994). A Practical method for estimating the impact of land use change on surface runoff, groundwater recharge, and wetland hydrology. Journal of the American Planning Association, 60(1), 95–108.

    Article  Google Scholar 

  • Ji, L., & Peters, A. J. (2004). A spatial regression procedure for evaluating the relationship between AVHRR-NDVI and climate in the northern Great Plains. International Journal of Remote Sensing, 25(2), 297–311.

    Article  Google Scholar 

  • Kuchment, L. S., Demidiv, V. N., Naden, P. S., Cooper, D. M., & Broadhurst, P. (1996). Rainfall-runoff modelling of the Ouse basin, North Yorkshire: an application of a physically based distributed model. Journal of Hydrology, 181(1–4), 323–342.

    Article  Google Scholar 

  • Lahmer, W., Pfiitzner, B., & Becker, A. (2001). Assessment of land use and climate change impacts on the mesoscale. Physicsand Chemisty of the Earth (B), 26(7), 565–575.

    Article  Google Scholar 

  • Lee, J. G., & Heaney, J. P. (2003). Estimation of urban imperviousness and its impacts on storm water systems. Journal of Water Resources Planning and Management, 129(5), 419–426.

    Article  Google Scholar 

  • Luck, G. W. (2007). The relationships between net primary productivity, human population density and species conservation. Journal of Biogeography, 34(2), 201–212.

    Article  Google Scholar 

  • Novak, A., & Wang, Y. (2004). Effects of suburban sprawl on Rhode Island’s forest: a Landsat view from 1972 to 1999. Northeastern Naturalist, 11(1), 67–74.

    Article  Google Scholar 

  • Ott, B., & Uhlenbrook, S. (2004). Quantifying the impact of land-use changes at the event and seasonal time scale using a process-orientated catchment model. Hydrology and Earth System Sciences, 8(1), 62–78.

    Article  Google Scholar 

  • Paul, M. J., & Meyer, J. L. (2001). Streams in the urban Landscape. Annual Review of Ecological Systems, 32, 333–365.

    Article  Google Scholar 

  • Piha, M., Tiainen, J., Holopainen, J., & Vepsäläinen, V. (2007). Effects of land-use and landscape characteristics on avian diversity and abundance in a boreal agricultural landscape with organic and conventional farms. Biological Conservation, 140(1–2), 50–61.

    Article  Google Scholar 

  • U.S. Geological Survey. (2007). National Hydrography Dataset. http://nhd.usgs.gov/. Accessed 25 July 2007.

  • Warnemuende, E. A., Shuster, W., Smith, D. R., Bonta, J. V. (2003). Methodology for determining effects of extent and geometry of impervious surface on hydrologic balance. First Interagency Conference on Research in the Watersheds. October 27, 2003. pp. 89–94.

  • Wegehenkel, M., Heinrich, U., Uhlemann, S., Dunger, V., & Matschullat, J. (2006). The impact of different spatial land cover data sets on the outputs of a hydrological model: a modelling exercise in the Ucker catchment, North-East Germany. Physics and Chemistry of the Earth, 31(17), 1075–1088.

    Article  Google Scholar 

  • Zhou, Y., & Wang, Y. (2007). An assessment of impervious surface areas in Rhode Island. Northeastern Naturalist, 14(4), 643–650.

    Article  Google Scholar 

  • Zhou, Y., & Wang, Y. (2008). Extraction of impervious surface areas from high spatial resolution imageries by multiple agent segmentation and classification. Photogrammetric Engineering and Remote Sensing, 74(7), 857–868.

    Article  Google Scholar 

  • Zhou, Y., Wang, Y., Gold, A., & August, P. (2010) Modeling watershed rainfall–runoff relations using impervious surface-area data with high spatial resolution. Hydrogeology Journal, 18(6), 1413–1423.

    Google Scholar 

  • Zhou, Y., Zhu, Q., Chen, J., Wang, Y., Liu, J., Sun, R., et al. (2007). Observation and estimation of net primary productivity in Qilian Mountain, western China. Journal of Environmental Management, 85(3), 574–584.

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Rhode Island Agricultural Experimental Station (Project No. RI00H330). The authors want to thank the anonymous referees for useful comments that have improved the final version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuyu Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Wang, Y., Gold, A.J. et al. Assessing impact of urban impervious surface on watershed hydrology using distributed object-oriented simulation and spatial regression. GeoJournal 79, 155–166 (2014). https://doi.org/10.1007/s10708-013-9506-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10708-013-9506-x

Keywords

Navigation