Skip to main content

Toward critical spatial thinking in the social sciences and humanities

Abstract

The integration of geographically referenced information into the conceptual frameworks and applied uses of the social sciences and humanities has been an ongoing process over the past few centuries. It has gained momentum in recent decades with advances in technologies for computation and visualization and with the arrival of new data sources. This article begins with an overview of this transition, and argues that the spatial integration of information resources and the cross-disciplinary sharing of analysis and representation methodologies are important forces for the integration of scientific and artistic expression, and that they draw on core concepts in spatial (and spatio-temporal) thinking. We do not suggest that this is akin to prior concepts of unified knowledge systems, but we do maintain that the boundaries to knowledge transfer are disintegrating and that our abilities in problem solving for purposes of artistic expression and scientific development are enhanced through spatial perspectives. Moreover, approaches to education at all levels must recognize the need to impart proficiency in the critical and efficient application of these fundamental spatial concepts, if students and researchers are to make use of expanding access to a broadening range of spatialized information and data processing technologies.

This is a preview of subscription content, access via your institution.

References

  • Anonymous. (2008). Editorial: A place for everything. Nature, 453(2), 2.

    Google Scholar 

  • Anselin, L. (1989). What is special about spatial data? Alternative perspectives on spatial data analysis. Technical Report 89–4. Santa Barbara, CA: National Center for Geographic Information and Analysis.

    Google Scholar 

  • Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical Analysis, 27(2), 93–115.

    Google Scholar 

  • Anselin, L., Florax, R. J., & Rey, S. J. (Eds.). (2004). Advances in spatial econometrics: Methodology, tools and applications. Berlin: Springer.

    Google Scholar 

  • Ayers, W. (2009). Space, and time: mapping historical change. Keynote presentation at the GIS in the humanities and social sciences international conference, Research Center for Humanities and Social Sciences, Academia Sinica, Taipei, Taiwan. October 7–9, 2009.

  • Boonstra, O. W. A. (2009). No place in history—geo-ICT and historical science. In H. J. Scholten, R. van de Velde, & N. van Manen (Eds.), Geospatial technology and the role of location in science (pp. 87–101). Dordrecht, NL: Springer.

    Chapter  Google Scholar 

  • Castro, M. C. (2007). Spatial demography: An opportunity to improve policy making at diverse decision levels. Population research and policy review, 26(5–6), 477–509.

    Article  Google Scholar 

  • Cressie, N. A. C. (1993). Statistics for spatial data. New York: Wiley.

    Google Scholar 

  • Cromley, E. K., & McLafferty, S. L. (2002). GIS and public health. New York: Guilford Press.

    Google Scholar 

  • Cummins, S., Curtis, S., Diez-Roux, A. V., & Macintyre, S. (2007). Understanding and representing ‘place’ in health research: A relational approach. Social Science and Medicine, 65(9), 1825–1838.

    Article  Google Scholar 

  • de Smith, M. J., Goodchild, M. F., & Longley, P. A. (2009). Geospatial analysis: a comprehensive guide to principles, techniques, and software tools. Leicester, UK: The Winchelsea Press, Troubador Publishing, Ltd. (a pdf e-book at http://www.spatialanalysisonline.com/).

  • Eliot, J. (1987). Models of psychological space: Psychometric, developmental and experimental approaches. New York: Springer-Verlag.

    Google Scholar 

  • Elwood, S. (2008). Volunteered geographic information: Key questions, concepts and methods to guide emerging research and practice. Geo Journal, 72(3–4), 133–135.

    Google Scholar 

  • Fotheringham, A. S. (2009). Spatial variations in population dynamics: A GIScience and GWR perspective using a case study of Ireland 1841-1851. Special presentation at the GIS in the humanities and social sciences international conference, Research Center for Humanities and Social Sciences, Academia Sinica, Taipei, Taiwan. October 7–9, 2009.

  • Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographically weighted regression: The analysis of spatially varying relationships. New York: Wiley.

    Google Scholar 

  • Gardner, H. E. (1983). Frames of mind: The theory of multiple intelligences. New York: Basic Books.

    Google Scholar 

  • Gersmehl, P. J. (2005). Teaching geography. New York: Guilford.

    Google Scholar 

  • Goodchild, M. F. (2007). Citizens as sensors: The world of volunteered geography. Geo Journal, 69(4), 211–221.

    Google Scholar 

  • Goodchild, M. F. (2009). The changing face of GIS. Keynote presentation at the GIS in the humanities and social sciences international conference, Research Center for Humanities and Social Sciences, Academia Sinica, Taipei, Taiwan. October 7–9, 2009.

  • Goodchild, M. F., Anselin, L., & Deichmann, U. (1993). A framework for the areal interpolation of socioeconomic data. Environment and Planning A, 25(3), 383–397.

    Article  Google Scholar 

  • Goodchild, M. F., Egenhofer, M. J., Fegeas, R., & Kottman, C. A. (Eds.). (1999). Interoperating geographic information systems. Boston: Kluwer.

    Google Scholar 

  • Goodchild, M. F., & Janelle, D. G. (Eds.). (2004). Spatially integrated social science. New York: Oxford University Press.

    Google Scholar 

  • Gregory, I. (2009). Censuses, literature and newspapers: Quantitative and qualitative approaches to studying the past with GIS. Keynote presentation at the GIS in the humanities and social sciences international conference, Research Center for Humanities and Social Sciences, Academia Sinica, Taipei, Taiwan. October 7–9, 2009.

  • Haining, R. P. (2003). Spatial data analysis: Theory and practice. New York: Cambridge University Press.

    Google Scholar 

  • Harris, T. (2009). Conceptualizing the spatial humanities and humanities GIS. Keynote presentation at the GIS in the humanities and social sciences international conference, Research Center for Humanities and Social Sciences, Academia Sinica, Taipei, Taiwan. October 7–9, 2009.

  • Holden, C. (2009). Science needs kids with vision. Science, 325(5945), 1190–1191.

    Article  Google Scholar 

  • Hornsby, K. S., & Yuan, M. (Eds.). (2008). Understanding dynamics of geographic domains. Boca Raton: CRC Press.

    Google Scholar 

  • Janelle, D. G. (2009). Spatio-temporal approaches to understanding human behavior and social organization. Special presentation at the GIS in the humanities and social sciences international conference, Research Center for Humanities and Social Sciences, Academia Sinica, Taipei, Taiwan. October 7–9, 2009.

  • Janelle, D. G., & Hodge, D. C. (Eds.). (2000). Information, place, and cyberspace: Issues in accessibility. Berlin: Springer-Verlag.

    Google Scholar 

  • Jessop, M. (2007). Literary and linguistic computing advance access. Literary and Linguistic Computing. Published online on November 20, 2007, doi:10.1093/llc/fqm041, http://llc.oxfordjournals.org/cgi/content/short/fqm041v1.

  • Johnson, S. (2006). The ghost map: The story of London’s most terrifying epidemic and how it changed science, cities, and the modern world. New York: Riverhead Books.

    Google Scholar 

  • King, G. (1997). A solution to the ecological inference problem: Reconstructing individual behavior from aggregate data. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Kozhevnikov, M., Hegarty, M., & Mayer, R. (1999). Students’ use of imagery in solving qualitative problems in kinematics. Washington DC: US Department of Education. (ERIC Document Reproduction Service No. ED433239).

    Google Scholar 

  • Kozhevnikov, M., Hegarty, M., & Mayer, R. (2002). Revising the visualize-verbalizer dimension: Evidence for two types of visualizers. Cognition and Instruction, 20(1), 47–77.

    Article  Google Scholar 

  • Kozhevnikov, M., Kosslyn, S., & Shephard, J. (2005). Spatial versus object visualizers: A new characterization of visual cognitive style. Memory and Cognition, 33(4), 710–726.

    Google Scholar 

  • Krugman, P. (1991). Geography and trade. Cambridge, MA: MIT Press.

    Google Scholar 

  • Legé, S. (1999). Why not three dimensions? Mathematics Teacher, 92(7), 560–563.

    Google Scholar 

  • Levin, S. A. (1992). The problem of pattern and scale in ecology. Ecology, 73(6), 1943–1967.

    Article  Google Scholar 

  • Lin, H., & Batty, M. (Eds.). (2009). Virtual geographic environments. Beijing: Science Press.

    Google Scholar 

  • Liu, Y., Guo, Q. H., Wieczorek, J., & Goodchild, M. F. (in press). Positioning localities based on spatial assertions. International Journal of Geographical Information Science.

  • Mandelbrot, B. (1982). The fractal geometry of nature. San Francisco: Freeman.

    Google Scholar 

  • Matthews, S. A. (2008). The salience of neighborhoods: Lessons from early sociology? American Journal of Preventive Medicine, 34(3), 257–259.

    Article  Google Scholar 

  • Mitchell, A. (1999). The ESRI guide to GIS analysis: Vol. 1, geographic patterns and relationships. Redlands, CA: ESRI Press.

    Google Scholar 

  • Mitchell, A. (2005). The ESRI guide to GIS analysis: Vol. 2, spatial measurements and statistics. Redlands, CA: ESRI Press.

    Google Scholar 

  • National Research Council. (2006). Learning to think spatially: GIS as a support system in the K-12 curriculum. Washington, DC: National Academies Press. http://www.nap.edu/catalog.php?record_id=11019.

  • Newcombe, N. S., & Huttenlocher, J. (2000). Making space. Cambridge, MA: MIT Press.

    Google Scholar 

  • Nyerges, T., Couclelis, H., & McMaster, R., (Eds.) (in press). Handbook on GIS and society research. Los Angeles, CA: Sage Publications.

  • Openshaw, S. (1983). The modifiable areal unit problem. Concepts and techniques in modern geography: CATMOG Series 38. Norwich, UK: GeoBooks.

    Google Scholar 

  • Orszag, P. R., Barnes, M., Carrion, A., & Summers, L. (2009). Memorandum for the heads of executive departments and agencies. The White House, Washington, D.C., August 11, 2009. http://www.whitehouse.gov/omb/assets/memoranda_fy2009/m09-28.pdf.

  • Phoenix, M. (2009). The importance of spatial thinking in social sciences. Special presentation at the GIS in the humanities and social sciences international conference, Research Center for Humanities and Social Sciences, Academia Sinica, Taipei, Taiwan. October 7–9, 2009.

  • Quattrochi, D. A., & Goodchild, M. F. (Eds.). (1997). Scale in remote sensing and GIS. Boca Raton, FL: Lewis.

    Google Scholar 

  • Robinson, W. S. (1950). Ecological correlations and the behavior of individuals. American Sociological Review, 15(3), 351–357.

    Article  Google Scholar 

  • Rumsey, A. S. (2009). Scholarly communication institute 7: spatial technologies and the humanities, a conference hosted by the Scholarly Communication Institute, University of Virginia, Charlottesville, VA: June 28–30, 2009. Accessed at http://www.uvasci.org/wp-content/uploads/2009/10/sci7-published-full1.pdf.

  • Scholten, H. J., van de Velde, R., & van Manen, N. (Eds.). (2009). Geospatial technology and the role of location in science. Dordrecht, NL: Springer.

    Google Scholar 

  • Shea, D. L., Lubinski, D., & Benbow, C. P. (2001). Importance of assessing spatial ability in intellectually talented young adolescents: A 20-year longitudinal study. Journal of Educational Psychology, 93(3), 604–614.

    Article  Google Scholar 

  • Skupin, A., & Fabrikant, S. (2003). Spatialization methods: a cartographic research agenda for non-geographic information visualization. Cartography and Geographic Information Science, 30(2), 99–119.

    Article  Google Scholar 

  • Smith, I. A. (1964). Spatial ability: Its educational and social significance. London: University Press.

    Google Scholar 

  • Tate, N. J., & Atkinson, P. M. (Eds.). (2001). Modelling scale in geographical information science. New York: Wiley.

    Google Scholar 

  • Tilman, D., & Kareiva, P. (Eds.). (1997). Spatial ecology: The role of space in population dynamics and interspecific interactions. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Tobler, W. R., Deichmann, U., Gottsegen, J., & Maloy, K. (1997). World population in a grid of spherical quadrilaterals. International Journal of Population Geography, 3(3), 203–225.

    Article  Google Scholar 

  • Voss, P. R. (2007). Demography as a spatial social science. Population Research and Policy Review, 26(5–6), 457–476.

    Article  Google Scholar 

  • Voss, P. R., White, K. J. C., & Hammer, R. B. (2006). Explorations in spatial demography. In W. Kandel & D. L. Brown (Eds.), The population of rural America: Demographic research for a new century (pp. 407–429). Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin, 117(2), 250–270.

    Article  Google Scholar 

  • Wheatley, G. H. (1997). Reasoning with images in mathematical activity. In L. D. English (Ed.), Mathematical reasoning: Analogies, metaphors, and images (pp. 281–297). Mahwah, NJ: Erlbaum.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald G. Janelle.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goodchild, M.F., Janelle, D.G. Toward critical spatial thinking in the social sciences and humanities. GeoJournal 75, 3–13 (2010). https://doi.org/10.1007/s10708-010-9340-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10708-010-9340-3

Keywords

  • Spatial concepts
  • Spatial integration
  • Spatial thinking
  • Spatio-temporal knowledge systems