Advertisement

GeoJournal

, Volume 61, Issue 2, pp 131–149 | Cite as

Uranium pollution of South African streams – An overview of the situation in gold mining areas of the Witwatersrand

  • F. Winde
  • L. A. Sandham
Article

Abstract

During more than a century of gold mining in South Africa large amounts of tailings were produced, which now cover vast areas in densely populated regions. These dumps contain elevated levels of uranium and other toxic heavy metals associated with gold in the mined ore. Large-scale extraction of uranium from auriferous ore only took place during the cold war, leaving tailings with high uranium concentrations that were deposited before and after this period. Recent studies found elevated levels of the radioactive heavy metal in groundwater and streams, mainly attributed to the discharge of contaminated water from mines. In this paper the contribution of seepage from slimes dams to the uranium pollution of adjacent streams is analysed. Based on geochemical analyses of samples, field observations and long-term in situ measurements of hydraulic and hydrochemical parameters at selected mining sites across the Witwatersrand goldfields, the extent, mechanisms and dynamics of diffuse stream contamination by tailings seepage is characterised. Temporal and spatial variations of the process and the associated hazard potential are discussed.

gold mining mine tailings sediments seepage uranium contamination uranium mobility uranium pollution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen R.E., (ed.), 1992:Concise Oxford Dictionary, Clarendon Press, Oxford.Google Scholar
  2. Amis J., Duthe-Taussig D., Morton K. and Sibilski U.,2001:A strategic plan for the efficient monitoring of trends in ground water quality affected by gold mining in South Africa. Conference on environmentally responsible mining in southern Africa, 25–28 September 2001, Muldersdrift, Johannesburg. Papers, Vol.1, 4A–1–4A-5.Google Scholar
  3. Bain C.A.R., Schoonbee H.J., de Wet L.P.D. and Hancke J.J.,1994: Investigations into the concentration ratios of selected radionuclides in aquatic ecosystems affected by mine drainage effluents with reference to the study of potential pathways to man. WRC report No.313/1/94. Pretoria.Google Scholar
  4. Botha J.C. and Human C.F.,2001:The radiological impact of radon and dust, from gold mining operations, on the public. Conference on environmentally responsible mining in southern Africa, 25–28 September 2001, Muldersdrift, Johannesburg. Papers, Vol.1, 2C11–2C18.Google Scholar
  5. BUNR (Bundesminister fur Umwelt, Naturschutz und Reaktorsicher-heit), 1988:Radionuklide in Wasser-Schwebstoff-Sediment-Systemen und Abschatzung der Strahlenexpositionff Fischer Verlag, Stuttgart, New York. 300S.Google Scholar
  6. CNS (Council for Nuclear Safety), 1996:Report on radioactive contamination at New Machavie gold mine on the farm Eleazer 377 IP, Magisterial district of Klerksdorp. DWAF Potchefstroom.Google Scholar
  7. Coetzee H., 1995:Radioactivity and the leakage of radioactive waste associated with Witwatersrand gold and uranium mining. In: Merkel B., Hurst S., Lohnert E.P. and Struckmeier W. (eds.), Uranium-Mining an Hydrology. Proceedings of the Internationals Conference and Workshop in Freiberg, Germany, October 1995. GeoCongress,1. Koln.34–39.Google Scholar
  8. Coetzee H. and Szczesniak H.,1993:Detection and monitoring of pollution from mine tailings dams along rivers in the Witwatersrand Gold Fields using the airborne radiometric method.16th International Colloquium on African geology,94–96.Google Scholar
  9. Coetzee H., Terblanche O. and Stettler R.,1997:Electromagnetic (MaxMin)and gravity investigation of a suspected pollution plume at Doornfontein gold mine. Geological Survey report 1997–0239, Pretoria.Google Scholar
  10. Coetzee H., Wade P. and Winde F.,2001:Understanding environ-mental geophysical anomalies-an interdisciplinary case study from the West Rand. Extended abstract:The South African Geophysical Association, Biennial Technical Meeting and Exhibition, 9–12 October 2001, Drakensberg (South Africa),5pp.Google Scholar
  11. Coetzee H., Wade P. and Winde F.,2002:Reliance on existing wetlands for pollution control around the Witwatersrand gold/ uranium mines of South Africa-are they sufficient? In: Merkel B.J., Planer-Friedrich B., Wolkersdorfer C. (eds), Uranium in the Aquatic Environmentff pp.59–65. Springer, Berlin, Heidelberg.Google Scholar
  12. Coetzee H., Wade P., Ntsume G. and Jordaan W.,2002b:Radioactivity study on sediments in a dam in the Wonderfonteinspruit catchment. DWAF-Report 2002, Pretoria.Google Scholar
  13. Cole D.I., 1998:Uranium. In: Wilson M.G.C. and Anhausser C.R. (eds), The mineral resources of South Africa:Handbook. Council for Geoscience, 16, 642–652.Google Scholar
  14. Creamer T.,2001:The South African mining environment in 2002. Electra Mining Africa 2002, September 6–12, preview supplement, Engineering News and Mining Weekly, 30–41.Google Scholar
  15. de Beer.,1995:Combined impact of post-1990 ICRP recommendations on radiological control requirements within the South African mining industry. IRPA, Endorsed Intern. Conference Johannesburg, SA, 20–24/2/95, Paper 18.Google Scholar
  16. de Jesus A.S.M., Malan J.J., Ellerbeck V.T., van der Bank D.J. and Moolman E.W., 1987:An assessment of the radium-226 concentration levels in tailings dams and environmental waters in the gold/ uranium mining areas of the Witwatersrand. Report No. PER-159, Atomic Energy Corporation, Pelindaba.Google Scholar
  17. DWAF (Department for Water affairs and Forestry), 1996:South African Water Guidelines. Vol.1:Domestic Water Use. Pretoria.Google Scholar
  18. Everrett M.J. and Quibell G., 1995:The impact of diff use load reductions from the mines in the Orkney, Stilfontein area on the water quality in the Vaal River. Final Report. Pretoria.Google Scholar
  19. Faanhof A., van Veelen M. and Pulles W., 1995:Radioactivity in water sources:a preliminary survey. DWAF report No. N/0000/00/ REQ/0695, Pretoria.Google Scholar
  20. Fedoroff M.,1998:Sorption mechanisms of heavy metal ions and role of sorption-desorption in their transport in water. Abstract in http://www.geo.tu-freiberg.de/umh/abstracts.doc.html, accessed: 24.08.1999.Google Scholar
  21. Ford M.A.,1993:Uranium in South Africa. Journal of The South African Institute of Mining and Metallurgy 93 (2):37–58.Google Scholar
  22. Forstner U. and Patchineelam S.R., 1976:Bindung und Mobilisation von Schwermetallen inff uviatilen Sedimenten. Chemikerzeitung, 100(2):49–57.Google Scholar
  23. Funke J.W.,1990:The water requirements and pollution potential of South African gold and uranium mines. WRC-report No. KV 9/90, Pretoria.172pp.Google Scholar
  24. Geipel G., Bernhard G., Brachmann A., Brendler V. and Nitsche H., 1995:Speziation des uraniums in haldensickerwassern des uran-bergbaus. In: Merkel B., Hurst S., Lohnert E.P. and Struckmeier W., (eds.), Uranium-Mining an Hydrology. Proceedings of the Internationals Conference and Workshop in Freiberg, Germany, October 1995. GeoCongress I, Koln,167–175.Google Scholar
  25. Hellmann H., 1999:Qualitative Hydrologie-Wasserbeschaff enheit und Stoff-Flusseffe. Borntrager Berlin, Stuttgart 1999.Google Scholar
  26. IWQS (Institute for Water Quality Studies), 1999:Report on the radioactivity-monitoring programme in the Mooi River (Wonder-fonteinspruit)catchment. Report No. N/C200/00/RPQ/2399.Google Scholar
  27. Janisch P.R.,1986:Gold in South Africa. Journal of The South African Institute of Mining and Metallurgy 86(8):273–316.Google Scholar
  28. Jenne E.A., 1995: Metal adsorption onto and desorption from sediments:I. rates. Allen H.E. (ed.) Metal Contaminated Aquatic Sedimentsff Ann Arbor Press, Inc., Michigan, 81–105.Google Scholar
  29. Kempster P.L., van Vliet H.R., Looser U., Parker I., Silberbauer M.J. and du Toit P.,1996:Overview of radioactivity in water sources: uranium, radium and thorium. Final report. IWQS-No. N/0000/00/ RPQ/0196. Pretoria.Google Scholar
  30. Luther G.W.,1995:Trace metal chemistry in pore waters. In;Allen H.E. (ed.), Metal Contaminated Aquatic Sediments. pp.65–75, Ann Arbor Press, Inc., Michigan.Google Scholar
  31. L&W Environmental,(undated):Klerksdorp regional groundwater baseline study. Report No.2562/623/1/E for the Klerksdorp Mine Managers Association.Google Scholar
  32. Markos G.,1992:Geochemische Beweglichkeit und Transfer von Schadstoffin in Tailings. In: Buergerinitiative gegen Uranabbau im Suedschwarzwald (Hrsg):Sanierung von Altlasten des Uranbergb-aus. Materialsammlung. 27–33.Google Scholar
  33. Markos G. and Bush K.J.,1992:Thermodynamische Berechnungen und Phasendiagramme zur Ermittlung von Wechselwirkungen zwischen Tailings, naturlichem Untergrund und Wasser. In: Buergerinitiative gegen Uranabbau im Sudschwarzwald (Hrsg): Sanierung von Altlasten des Uranbergbaus, Materialsammlung. 38–47.Google Scholar
  34. Matthess G.,1990:Lehrbuch der Hydrogeologie. Band 2:Die Beschaff-enheit des Grundwassers. Borntrager Berlin, Stuttgart. 483S.Google Scholar
  35. Mc Lean C.S.,1994:The uranium industry of South Africa. The Journal of The South African Institute of Mining and Metallurgy. 113–122.Google Scholar
  36. Mrost M.J. and Lloyd P.J.,1970:Bacterial oxidation of Witwaters-rand slimes. Proceed Symp on the recovery of uranium from its ores, Sao Paulo, August 1970, 223–239.Google Scholar
  37. Pourbaix M.,1985:Atlas Of Electrochemical Equilibria In Aqueous Solutions Houston, Brussels,208–210.Google Scholar
  38. Pulles W.,(COMRO, Underground Environment) 1991:Radionuclides in South African gold mining water circuits:an assessment of licensing, health hazards, water and waste water regulations and impact on the environment and workforce. Restricted Report No. 17/91, Programme reference GE1C:Radiation Control. Develop a system for radiation dose limitation and control appropriate to the South African mining industry.Google Scholar
  39. Pulles W., Heath R. and Howard M., 1996:A manual to assess and manage the impact of gold mining operations on the surface water environment. Data collection & assessment, water & salt balances, impact assessment, management strategies. Report to the CSIR, Division of Water Technology. WRC Report No TT 79/96. Pretoria (ISBN 1 86845 251–254).Google Scholar
  40. Read D. and Falck W.E.,1995:Long-term uranium migration behaviour-an overview of the natural analogue studies carried out in the British isles. In: Merkel B., Hurst S., Lohnert E.P. and Struckmeier W. (eds), Uranium-Mining and Hydrology. Proceed-ings of the International Conference and Workshop in Freiberg, Germany, October 1998. GeoCongress, Koln.Google Scholar
  41. Robb L.J. and Robb V.M.,1998a:Environmental impact of Witwa-tersrand gold mining. In: Wilson M.G.C. and Anhausser C.R. (eds), The Mineral Resources of South Africa:Handbook. Council for Geoscience 16, 14–16.Google Scholar
  42. Robb L.J. and Robb V.M.,1998b:Gold in the Witwatersrand basin. In: Wilson M.G.C. and Anhausser C.R. (eds), The Mineral Resources of South Africa:Handbook, Council for Geoscience, 16, 294–349.Google Scholar
  43. Robinson W.P., 1995:Ground water contamination at uranium mill sites in the United States reclaimed by the Department of energy (DOE) Uranium Mill Tailings Remedial Action Project (UMTRAP): a review of seven selected sites. In: Merkel B., Hurst S., Lohnert E.P. and Struckmeier W. (eds), Uranium-Mining and Hydrology. Proceedings of the International Conference and Workshop in Freiberg, Germany, October 1995, GeoCongress, Koln.Google Scholar
  44. Schoonbee H.J., Adendorff A., de Wet L.P.D., Fleischer C.L., van der Merwe C.G., van Eeden P.H. and Venter A.J.A., 1995:The occurrence and accumulation of selected heavy metals in fresh water ecosystems affected by mine and industrial polluted effluent. Report to the Water Research Commission. WRC-report No.312/1/96 (ISBN 186845 210 7),148pp.Google Scholar
  45. Shepherd T.A. and Cherry J.A., 1992:Schadstoff transport in Sick-erwaessern von Uran-Tailings-Deponien:Ein Ueberblick. In: Bue-rgerinitiative gegen Uranabbau im Suedschwarzwald (Hrsg): Sanierung von Altlasten des Uranbergbaus. Materialsammlung. 55–77.Google Scholar
  46. Simonic M., 1996:Geohydrological investigation of the groundwater pollution next to slime dam #1, Kloof Mine:Phase 2. Confident. Rep. Klo/97/072 to Kloof GM (Pty)Ltd.Google Scholar
  47. SKR (Steffen, Robertson and Kirsten), 1988:Research on the contribution of mine dumps to the mineral pollution load in the Vaal Barrage. WRC-Report-No:136/1/89. Pretoria.114pp.Google Scholar
  48. Steenkamp H.C.,1996:Investigations into ''inexplicable ''high con-centrations of uranium in urine samples. SAAPMB, 36th Annual Congress and Summer School, 7–10 May 1996, Paper 9, CSIR, Pretoria.Google Scholar
  49. Uranium Institute,2001:Western world Uranium production and reactor requirements. In:http://www.world-nuclear.org/info/graphics/uprodinf23.gif, accessed:15/06/01.Google Scholar
  50. Van Cappellen P. and Wang Y.,1995:Metal cycling in surface sediments:modelling the interplay of transport and reaction. Allen H.E.,(ed.), Metal Contaminated Aquatic Sediments. pp.21–60, Ann Arbor Press, Inc., Michigan.Google Scholar
  51. Venter I., 2001:South African mining sector facing radiation challenge. Mining Weekly, Vol.7(43)(November pp9–15,2001),2–3.Google Scholar
  52. Wade P.W., Woodbourne S., Morris W.M., Vos P. and Jarvis N.V., 2000:Tier 1 risk assessment of radionuclides in selected sediments of the Mooi River. WRC-Project No. K5/1095.Google Scholar
  53. Waggitt P.,1994:A review of worldwide practice for disposal of uranium mill tailings. Technical memorandum 48. Canberra.Google Scholar
  54. Wendel G.,1998:Radioactivity in mines and mine water-sources and mechanisms. The Journal of The South African Institute of Mining and Metallurgy. 87–92.Google Scholar
  55. Winde F.,2000:Geloster Stoff transfer undffluviale Prozessdynamik in Vorfflutern desostthuringischen Uranbergbaugebiets. Jenaer Geographische Schriften 9, 111–127.Google Scholar
  56. Winde F.,2001:Slimes dams as source of uranium contamination of streams-the Koekemoerspruit (Klerksdorp gold eld) as a case study. Chamber of Mines of South Africa (ed.), Conference Environmentally Responsible Mining in Southern Africa,25–28 September 2001, Muldersdrift (South Africa), Vol.1, 2c1–2c10.Google Scholar
  57. Winde F.,2002:Fluviale Prozesse und Urantransport-Beispiele aus der Wismutregion Ostthuringens und den Goldbergbaugebieten Sudafrikas. In:Trierer Geographische Studien, Heft 25, 47–64.Google Scholar
  58. Winde F.,2003:Urankontamination von Flieβgewassern-Prozess-dynamik, Mechanismen und Steuerfaktoren. Untersuchungen zum Transport von gelostem Uran in bergbaulich gestorten Landschaf-ten unterschiedlicher Klimate. Habilitationsschrift, Universitaet Jena, 511 p.Google Scholar
  59. Winde F. and de Villiers A.B.,2002a:The nature and extent of uranium contamination from tailings dams in the Witwatersrand gold mining area (South Africa). In: Merkel B.J., Planer-Friedrich B. and Wolkersdorfer C.(eds), Uranium in the Aquatic Environment. pp.889–897, Berlin, Heidelberg.Google Scholar
  60. Winde F. and de Villiers A.B.,2002b:Uranium contamination of streams by tailings dams-case studies in the Witwatersrand gold mining area (South Africa). In: Merkel B.J., Planer-Friedrich B. and Wolkersdorfer C.(eds), Uranium in the Aquatic Environment pp.803–812, Springer Berlin, Heidelberg.Google Scholar
  61. Winde F. and van der Walt I.J.,2002:Uranium contamination of fluvial systems-mechanisms and processes. Part II:Dynamics of groundwater-stream interaction-a case study from the Koe-kemoerspruit (South Africa). In:Garcia-Ruiz J.M., Jones J.A.A. and Arnaez J.(eds), Environmental Change and Water Sustainability. pp.263–278, Zaragoza.Google Scholar
  62. Wipplinger P.E. and Coetzee H.,1997:The use of tailings of the Witwatersrand gold mines as building material:a health hazard of national significance. Pretoria.Google Scholar
  63. Wittmann G.T.W. and Foerstner U.,1977:Heavy metal enrichment in mine drainage, III, The Klerksdorp, West Wits and Evander goldfields. South African Journal of Science 73 (2):53–57.Google Scholar
  64. Wymer D.,1996:Management of radioactive waste from the gold mining industry. SAAPMB,36th Annual Congress and Summer School,7–10/5/96, CSIR, Pretoria.Google Scholar
  65. Wymer D.,2001:The impact of gold mining on radioactivity in water and foodstuffs. Chamber of Mines of South Africa:Conference on Environmental Responsible Mining in Southern Africa, Mulders-drift, Johannesburg,25–28/9/2001, Vol.1, 2C–19–2C-30 pp.Google Scholar
  66. Wymer D. and van der Linde A.,1995:An overview of occupational exposure in underground gold mines in South Africa. IRPA, endorsed Intern. Conference. Johannesburg,20–24/2/95, Paper 13.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • F. Winde
    • 1
    • 2
  • L. A. Sandham
    • 1
  1. 1.School of Environmental Sciences and DevelopmentNorth West UniversitySouth Africa
  2. 2.Currently at Far West Rand Dolomitic WaterAssociation, JohannesburgSouth Africa (

Personalised recommendations