Acar E, Kolda TG, Dunlavy DM (2011) All-at-once optimization for coupled matrix and tensor factorizations. arXiv:1105.3422
Bader BW, Kolda TG (2006) Algorithm 862: MATLAB tensor classes for fast algorithm prototyping. ACM Trans on Math Softw 32(4):635–653. https://doi.org/10.1145/1186785.1186794
MathSciNet
Article
MATH
Google Scholar
Bader BW, Kolda TG et al (2015) Matlab tensor toolbox version 2.6. Available online. http://www.sandia.gov/tgkolda/TensorToolbox/
Battaglino C, Ballard G, Kolda TG (2018) A practical randomized cp tensor decomposition. SIAM J Matrix Anal Appl 39(2):876–901
MathSciNet
Article
Google Scholar
Caliński T, Harabasz J (1974) A dendrite method for cluster analysis. Communications in Statistics-theory and Methods 3(1):1–27
MathSciNet
Article
Google Scholar
Castro PS, Zhang D, Chen C, Li S, Pan G (2013) From taxi gps traces to social and community dynamics: a survey. ACM Computing Surveys (CSUR) 46(2):1–34
Article
Google Scholar
Chi EC, Gaines BR, Sun WW, Zhou H, Yang J (2018) Provable convex co-clustering of tensors. arXiv:1803.06518
Comon P, Luciani X, De Almeida AL (2009) Tensor decompositions, alternating least squares and other tales. J Chemom: A J Chemom Soc 23(7-8):393–405
Article
Google Scholar
Danon L, Diaz-Guilera A, Duch J, Arenas A (2005) Comparing community structure identification. J Stat Mech: Theory and Exp 2005(09):P09008
Article
Google Scholar
Gauvin L, Panisson A, Cattuto C (2014) Detecting the community structure and activity patterns of temporal networks: a non-negative tensor factorization approach. PloS One 9(1):e86028
Article
Google Scholar
Grauwin S, Sobolevsky S, Moritz S, Gódor I, Ratti C (2015) Towards a comparative science of cities: Using mobile traffic records in new york, london, and hong kong. In: Computational approaches for urban environments, Springer, pp 363–387
Haass MJ, Van Benthem MH, Ochoa EM (2014) Tensor analysis methods for activity characterization in spatiotemporal data. Sandia Tech Report SAND2014–1825
Hong D, Kolda TG, Duersch JA (2018) Generalized canonical polyadic tensor decomposition. arXiv:abs/1808.07452
Ikematsu K, Murata T (2013) A fast method for detecting communities from tripartite networks. In: Int conferen on soc inform, Springer, pp 192–205
Ioannidis VN, Zamzam AS, Giannakis GB, Sidiropoulos ND (2018) Coupled graphs and tensor factorization for recommender systems and community detection. arXiv:1809.08353
Kolda TG, Bader BW (2009) Tensor decompositions and applications. SIAM Rev 51(3):455–500. https://doi.org/10.1137/07070111x
MathSciNet
Article
MATH
Google Scholar
Lee DD, Seung HS (2001) Algorithms for non-negative matrix factorization. pp 556–562
Li X, Li M, Gong YJ, Zhang XL, Yin J (2016) T-desp: Destination prediction based on big trajectory data. IEEE Transactions on Intell Transp Syst 17(8):2344–2354
Article
Google Scholar
Lin YR, Sun J, Castro P, Konuru R, Sundaram H, Kelliher A (2009) Metafac: community discovery via relational hypergraph factorization. In: Proc of the 15th ACM SIGKDD int conferen on knowl discov and data min, ACM, pp 527–536
Liu JX, Wang D, Gao YL, Zheng CH, Xu Y, Yu J (2017) Regularized non-negative matrix factorization for identifying differentially expressed genes and clustering samples: a survey. IEEE/ACM Trans on Computl Biolog and Bioinform 15(3):974–987
Article
Google Scholar
Liu L, Andris C, Ratti C (2010) Uncovering cabdrivers’ behavior patterns from their digital traces. Comput Environ Urban Syst 34(6):541–548
Article
Google Scholar
Liu Y, Li Z, Xiong H, Gao X, Wu J (2010) Understanding of internal clustering validation measures. In: 2010 IEEE International conference on data mining, IEEE, pp 911–916
Moreira-Matias L, Gama J, Ferreira M, Mendes-Moreira J, Damas L (2016) Time-evolving od matrix estimation using high-speed gps data streams. Expert Systems with Applications 44:275–288
Article
Google Scholar
Moreira-Matias L, Gama J, Ferreira M, Moreira J, Damas L (2013) Predicting taxi-passenger demand using streaming data. IEEE Trans on Intell Transp Syst 14:1393–1402. https://doi.org/10.1109/TITS.2013.2262376
Article
Google Scholar
Murtagh F (1983) A survey of recent advances in hierarchical clustering algorithms. The Comput J 26(4):354–359
Article
Google Scholar
Narita A, Hayashi K, Tomioka R, Kashima H (2012) Tensor factorization using auxiliary information. Data Min and Knowl Discov 25(2):298–324
MathSciNet
Article
Google Scholar
Neubauer N, Obermayer K (2010) Community detection in tagging-induced hypergraphs. In: Workshop on inform in netw. New York University NY, USA, pp 24–25
Ouvrard X, Goff JL, Marchand-Maillet S (2017) Adjacency and tensor representation in general hypergraphs part 1: e-adjacency tensor uniformisation using homogeneous polynomials. arXiv:1712.08189
Phithakkitnukoon S, Veloso M, Bento C, Biderman A, Ratti C (2010) Taxi-aware map: Identifying and predicting vacant taxis in the city. In: International joint conference on ambient intelligence, Springer, pp 86–95
Shashua A, Hazan T (2005) Non-negative tensor factorization with applications to statistics and computer vision. In: Proc of the 22nd int conferen on mach learn, ACM, pp 792–799
Sun L, Axhausen KW (2016) Understanding urban mobility patterns with a probabilistic tensor factorization framework. Transp Res Part B: Methodol 91:511–524
Article
Google Scholar
Takeuchi K, Tomioka R, Ishiguro K, Kimura A, Sawada H (2013) Non-negative multiple tensor factorization. In: 2013 IEEE 13Th int conferen on data min, IEEE, pp 1199–1204
Vervliet N, Debals O, Sorber L, Van Barel M, De Lathauwer L (2016) Tensorlab 3.0. https://www.tensorlab.net. Available online
Wang M, Zeng Y (2019) Multiway clustering via tensor block models. In: Adv in neural inf process sys, pp 713–723
Wang Y, Zheng Y, Xue Y (2014) Travel time estimation of a path using sparse trajectories. In: Proc of the 20th ACM SIGKDD int conferen on knowl discov and data min, ACM, pp 25–34
Wu R, Luo G, Jin Q, Shao J, Lu CT (2020) Learning evolving user’s behaviors on location-based social networks. GeoInformatica, pp 1–31
Wu T, Benson AR, Gleich DF (2016) General tensor spectral co-clustering for higher-order data. In: Adv in neural inf process syst, pp 2559–2567
Xu Y, Yin W (2013) A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion. SIAM J on Imaging Sci 6(3):1758–1789
MathSciNet
Article
Google Scholar
Yao L, Sheng QZ, Qin Y, Wang X, Shemshadi A, He Q (2015) Context-aware point-of-interest recommendation using tensor factorization with social regularization. In: Proc of the 38th int ACM SIGIR conferen on res and dev in inf retr, ACM, pp 1007–1010
Yılmaz KY, Cemgil AT, Simsekli U (2011) Generalised coupled tensor factorisation. In: Adv in neural inf process syst, pp 2151–2159
Zheng Y (2015) Trajectory data mining: an overview. ACM Trans on Intell Syst Technol (TIST) 6(3):29
Google Scholar
Zheng Y, Liu T, Wang Y, Zhu Y, Liu Y, Chang E (2014) Diagnosing new york city’s noises with ubiquitous data. In: Proc of the 2014 ACM int jt conferen on pervasive and ubiquitous comput, ACM, pp 715–725
Zheng Y, Liu Y, Yuan J, Xie X (2011) Urban computing with taxicabs. In: Proceedings of the 13th international conference on Ubiquitous computing, pp 89–98
Zheng Y, Zhou X (2011) Computing with spatial trajectories. Springer Science & Business Media