Skip to main content

SWS: an unsupervised trajectory segmentation algorithm based on change detection with interpolation kernels

Abstract

Trajectory mining aims to provide fundamental insights into decision-making tasks related to moving objects. A fundamental pre-processing step for trajectory mining is trajectory segmentation, where a raw trajectory is divided into several meaningful consecutive sub-sequences. In this work, we propose an unsupervised trajectory segmentation algorithm, Sliding Window Segmentation (SWS), that processes an error signal generated by calculating the deviation of the middle point of an octal window from its imaginary interpolated version. This algorithm is flexible and can be applied to different domains by selecting an appropriate interpolation kernel. We examined our algorithm on three datasets of three different domains such as meteorology, fishing, and people moving in a big city. We also compared SWS with three other trajectory segmentation algorithms, namely GRASP-UTS, CB-SMoT, and SPD. Our experiments show that the proposed algorithm achieves the highest harmonic mean of purity and coverage for all datasets and explored algorithms with statistically significant differences.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Adibi P, Pranovi F, Raffaetà A, Russo E, Silvestri C, Simeoni M, Soares A, Matwin S (2019) Predicting fishing effort and catch using semantic trajectories and machine learning. In: International workshop on multiple-aspect analysis of semantic trajectories. Springer, Berlin, pp 83–99

  2. Alvares LO, Bogorny V, Kuijpers B, de Macedo JAF, Moelans B, Vaisman A (2007) A model for enriching trajectories with semantic geographical information. In: Proceedings of the 15th annual ACM international symposium on advances in geographic information systems, GIS ’07. ACM, New York, pp 22:1–22:8. https://doi.org/10.1145/1341012.1341041

  3. Biljecki F, Ledoux H, Van Oosterom P (2013) Transportation mode-based segmentation and classification of movement trajectories. Int J Geogr Inf Sci 27 (2):385–407

    Article  Google Scholar 

  4. Carlini E, de Lira VM, Soares A, Etemad M, Machado BB, Matwin S (2020) Uncovering vessel movement patterns from AIS data with graph evolution analysis. In: EDBT/ICDT Workshops

  5. Castro PS, Zhang D, Chen C, Li S, Pan G (2013) From taxi gps traces to social and community dynamics: a survey. ACM Computing Surveys (CSUR) 46(2):17

    Article  Google Scholar 

  6. Dividino R, Soares A, Matwin S, Isenor AW, Webb S, Brousseau M (2018) Semantic integration of real-time heterogeneous data streams for ocean-related decision making. In: Big data and artificial intelligence for military decision making. STO. https://doi.org/10.14339/STO-MP-IST-160-S1-3-PDF

  7. Dodge S, Weibel R, Forootan E (2009) Revealing the physics of movement: comparing the similarity of movement characteristics of different types of moving objects. Comput Environ Urban Syst 33(6):419–434

    Article  Google Scholar 

  8. Edelhoff H, Signer J, Balkenhol N (2016) Path segmentation for beginners: an overview of current methods for detecting changes in animal movement patterns. Movement Ecology 4(1):21

    Article  Google Scholar 

  9. Ester M, Kriegel HP, Sander J, Xu X, et al. (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd, vol 96, pp 226–231

  10. Etemad M, Etemad Z, Soares A, Bogorny V, Matwin S, Torgo L (2020) Wise sliding window segmentation: a classification-aided approach for trajectory segmentation. In: Goutte C, Zhu X (eds) Advances in artificial intelligence. Canadian AI 2020. Lecture notes in computer science, vol 12109. Springer, Cham

  11. Etemad M, Soares A, Hoseyni A, Rose J, Matwin S (2019) A trajectory segmentation algorithm based on interpolation-based change detection strategies. In: EDBT/ICDT workshops

  12. Etemad M, Soares Júnior A, Matwin S (2018) Predicting transportation modes of gps trajectories using feature engineering and noise removal. In: Advances in artificial intelligence: 31st Canadian conference on artificial intelligence, Canadian AI 2018, Toronto, ON, Canada, May 8–11, 2018, Proceedings 31. Springer, pp 259–264

  13. Etemad M, Zare N, Sarvmaili M, Soares A, Brandoli Machado B, Matwin S (2020) Using deep reinforcement learning methods for autonomous vessels in 2D environments. In: Goutte C, Zhu X (eds) Advances in artificial intelligence. Canadian AI 2020. Lecture notes in computer science, vol 12109. Springer, Cham

  14. Feng S, Cong G, An B, Chee YM (2017) POI2Vec: geographical latent representation for predicting future visitors. In: AAAI, pp 102–108

  15. Gurarie E, Bracis C, Delgado M, Meckley TD, Kojola I, Wagner CM (2016) What is the animal doing? tools for exploring behavioural structure in animal movements. J Anim Ecol 85(1):69–84

    Article  Google Scholar 

  16. Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques. Elsevier, Amsterdam

    Google Scholar 

  17. Júnior AS, Renso C, Matwin S (2017) ANALYTIc: an active learning system for trajectory classification. IEEE Comput Graph Appl 37(5):28–39. https://doi.org/10.1109/MCG.2017.3621221

    Article  Google Scholar 

  18. Junior AS, Times VC, Renso C, Matwin S, Cabral LAF (2018) A semisupervised approach for the semantic segmentation of trajectories. In: 19th IEEE international conference on mobile data management (MDM). IEEE, pp 145–154

  19. Lee JG, Han J, Whang KY (2007) Trajectory clustering: a partition-and-group framework. In: Proceedings of the 2007 ACM SIGMOD international conference on management of data. ACM, pp 593–604

  20. Leiva LA, Vidal E (2013) Warped K-Means: an algorithm to cluster sequentially-distributed data. Inform Sci 237:196–210. https://doi.org/10.1016/j.ins.2013.02.042, http://www.sciencedirect.com/science/article/pii/S002002551300159X. Prediction, Control and Diagnosis using Advanced Neural Computations

    Article  Google Scholar 

  21. Long JA (2016) Kinematic interpolation of movement data. Int J Geogr Inf Sci 30(5):854–868

    Article  Google Scholar 

  22. MacQueen J, et al. (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. Oakland, CA, USA, vol 1, pp 281–297

  23. Moreno BN, Soares Júnior A, Times VC, Tedesco P, Matwin S (2014) Weka-SAT: a hierarchical context-based inference engine to enrich trajectories with semantics. In: Advances in artificial intelligence. Springer International Publishing, Cham, pp 333–338. https://doi.org/10.1007/978-3-319-06483-3_34

  24. Palma AT, Bogorny V, Kuijpers B, Alvares LO (2008) A clustering-based approach for discovering interesting places in trajectories. In: Proceedings of the 2008 ACM symposium on applied computing, SAC ’08. ACM, New York, pp 863–868. https://doi.org/10.1145/1363686.1363886

  25. Rocha JAM, Times VC, Oliveira G, Alvares LO, Bogorny V (2010) DB-SMOt: a direction-based spatio-temporal clustering method. In: 2010 5th IEEE international conference intelligent systems (IS). IEEE, pp 114–119

  26. Soares A, Dividino R, Abreu F, Brousseau M, Isenor AW, Webb S, Matwin S (2019) CRISIS: integrating AIS and ocean data streams using semantic web standards for event detection. In: International conference on military communications and information systems (ICMCIS). IEEE, pp 1–7

  27. Soares A, Rose J, Etemad M, Renso C, Matwin S (2019) VISTA: A visual analytics platform for semantic annotation of trajectories. In: Proceedings of the 22nd international conference on extending database technology (EDBT)

  28. Soares Júnior A, Moreno BN, Times VC, Matwin S, Cabral LAF (2015) GRASP-UTS: An algorithm for unsupervised trajectory segmentation. Int J Geogr Inf Sci 29(1):46–68

    Article  Google Scholar 

  29. de Souza EN, Boerder K, Matwin S, Worm B (2016) Improving fishing pattern detection from satellite AIS using data mining and machine learning. Plos one 11(7):e0158248

    Article  Google Scholar 

  30. Technitis G, Othman W, Safi K, Weibel R (2015) From a to b, randomly: a point-to-point random trajectory generator for animal movement. Int J Geogr Inf Sci 29(6):912–934

    Article  Google Scholar 

  31. Thompson TM, Rausch S, Saari RK, Selin NE (2014) A systems approach to evaluating the air quality co-benefits of us carbon policies. Nat Clim Chang 4(10):917

    Article  Google Scholar 

  32. Tremblay Y, Shaffer SA, Fowler SL, Kuhn CE, McDonald BI, Weise MJ, Bost CA, Weimerskirch H, Crocker DE, Goebel ME, et al. (2006) Interpolation of animal tracking data in a fluid environment. J Exp Biol 209(1):128–140

    Article  Google Scholar 

  33. Varlamis I, Tserpes K, Etemad M, Júnior AS, Matwin S (2019) A network abstraction of multi-vessel trajectory data for detecting anomalies. In: EDBT/ICDT workshops

  34. Varlamis I, Tserpes K, Sardianos C (2018) Detecting search and rescue missions from AIS data. In: 2018 IEEE 34th international conference on data engineering workshops (ICDEW), pp 60–65. https://doi.org/10.1109/ICDEW.2018.00017

  35. Yan Z, Giatrakos N, Katsikaros V, Pelekis N, Theodoridis Y (2011) Setrastream: semantic-aware trajectory construction over streaming movement data. In: International symposium on spatial and temporal databases. Springer, pp 367–385

  36. Zhang D, Li J, Wu Q, Liu X, Chu X, He W (2017) Enhance the AIS data availability by screening and interpolation. In: 2017 4th international conference on transportation information and safety (ICTIS). IEEE, pp 981–986

  37. Zheng Y, Fu H, Xie X, Ma W, Li Q (2011) Geolife gps trajectory dataset-user guide

  38. Zheng Y, Zhang L, Ma Z, Xie X, Ma WY (2011) Recommending friends and locations based on individual location history. ACM Transactions on the Web (TWEB) 5(1):5

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank NSERC (Natural Sciences and Engineering Research Council of Canada) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Etemad.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Etemad, M., Soares, A., Etemad, E. et al. SWS: an unsupervised trajectory segmentation algorithm based on change detection with interpolation kernels. Geoinformatica 25, 269–289 (2021). https://doi.org/10.1007/s10707-020-00408-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-020-00408-9

Keywords

  • Trajectory segmentation
  • Mobility data mining
  • Interpolation