Skip to main content
Log in

Joint hyperspectral unmixing for urban computing

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

Recently, many methods for hyperspectral unmixing have been proposed. These methods are often based on nonnegative matrix factorization (NMF), which naturally inherits the non-negative advantage and is in line with the common sense of physics. Although there are many ways to perform NMF-based hyperspectral unmixing, these methods can only unmix one hyperspectral image at a time. In practice, we may often collect two or more similar hyperspectral images, and the end of the hyperspectral images of the signal could be only slightly different. Traditional NMF-based hyperspectral unmixing methods cannot take advantage of the fact that different hyper-spectral images may have similar or even the same end-element signals. Accordingly, in order to improve the performance of NMF-based hyperspectral unmixing, we present an algorithm in this paper that can process two hyperspectral images, simultaneously, and makes full use of the available information when most of the signals at the two end-points are similar. This improves the effect of end-element extraction in hyperspectral unmixing evidenced by experimental results on both synthetic and real-world data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shang S, Chen L, Zheng K, Jensen CS, Wei Z, Kalnis P (2018) Parallel trajectory-to-location join. IEEE Transactions on Knowledge and Data Engineering

  2. Du B, Zhang M, Zhang L, Hu R, Tao D (2019) An improved quantum-behaved particle swarm optimization for endmember extraction. IEEE Transactions on Geoscience and Remote Sensing

  3. Qian Y, Jia S, Zhou J, Robles-Kelly A (2011) L1/2 sparsity constrained nonnegative matrix factorization for hyperspectral unmixing. In: International conference on digital image computing: techniques and applications, pp 447–453

  4. Du B, Wang Y, Wu C, Zhang L (2018) Unsupervised scene change detection via latent Dirichlet allocation and multivariate alteration detection. IEEE J Selected Topics Appl Earth Observ Remote Sens 11(12):4676–4689

    Article  Google Scholar 

  5. Lu X, Wu H, Yuan Y (2014) Double constrained nmf for hyperspectral unmixing. IEEE Trans Geosci Remote Sens 52(5):2746–2758

    Article  Google Scholar 

  6. Jia S, Qian Y (2009) Constrained nonnegative matrix factorization for hyperspectral unmixing. IEEE Trans Geosci Remote Sens 47(1):161–173

    Article  Google Scholar 

  7. Shi Q, Du B, Zhang L (2015) Spatial coherence-based batch-mode active learning for remote sensing image classification. IEEE Trans Image Process 24(7):2037–2050

    Article  Google Scholar 

  8. Winter ME (1999) N-findr: an algorithm for fast autonomous spectral end-member determination in hyperspectral data. Proceedings of SPIE - The International Society for Optical Engineering 3753:266–275

    Google Scholar 

  9. Wang J, Chang CI (2006) Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery. IEEE Trans Geosci Remote Sens 44(9):2601–2616

    Article  Google Scholar 

  10. Nascimento JMP, Dias JMB (2005) Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Trans Geosci Remote Sens 43(4):898–910

    Article  Google Scholar 

  11. Chen J, Jia X, Yang W, Matsushita B (2009) Generalization of subpixel analysis for hyperspectral data with flexibility in spectral similarity measures. IEEE Trans Geosci Remote Sens 47(7):2165–2171

    Article  Google Scholar 

  12. Li J, Bioucas-Dias JM (2009) Bioucas-Dias: minimum volume simplex: a fast algorithm to unmix hyperspectral data. In: Geoscience and remote sensing symposium, 2008. IGARSS 2008. IEEE International, pp III – 250–III – 253

  13. Bioucas-Dias JM (2009) A variable splitting augmented lagrangian approach to linear spectral unmixing. In: First Workshop on hyperspectral image and signal processing: evolution in remote sensing, 2009. WHISPERS ’09, pp 1–4

  14. Lillesand TM, Kiefer RW (2000) Remote sensing and image interpretation. Wiley

  15. Eggert J, Korner E (2004) Sparse coding and nmf. In: IEEE International joint conference on neural networks, 2004. Proceedings, vol 4, pp 2529–2533

  16. Lu X, Wu H, Yuan Y, Yan P, Li X (2013) Manifold regularized sparse nmf for hyperspectral unmixing. IEEE Trans Geosci Remote Sens 51(5):2815–2826

    Article  Google Scholar 

  17. Yue X, Xu J, Chen B, He Y (2019) A practical group signatures for providing privacy-preserving authentication with revocation, pp 226–245, 06

  18. Shang S, Ding R, Zheng K, Jensen CS, Kalnis P, Zhou X (2014) Personalized trajectory matching in spatial networks. VLDB J—Int J Very Large Data Bases 23(3):449–468

    Article  Google Scholar 

  19. Shang S, Chen L, Wei Z, Jensen CS, Zheng K, Kalnis P (2018) Parallel trajectory similarity joins in spatial networks. VLDB J—Int J Very Large Data Bases 27(3):395–420

    Article  Google Scholar 

  20. Paatero P (1994) Positive matrix factorization: a nonnegative factor model with optimal utilization of error estimates of data values. Environmetrics 5(2):111–126

    Article  Google Scholar 

  21. Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401:788–791

    Article  Google Scholar 

  22. Hoyer PO (2004) Non-negative matrix factorization with sparseness constraints. J Mach Learn Res 5(1):1457–1469

    Google Scholar 

  23. Zhang L, Song L, Du B, Zhang Y (2019) Nonlocal low-rank tensor completion for visual data. IEEE Transactions on Cybernetics

  24. Rajapakse M, Tan J, Rajapakse J (2004) Color channel encoding with nmf for face recognition. In: 2004 International conference on image processing, 2004. ICIP ’04., vol 3, pp 2007–2010

  25. Iskandar A (2017) Topic extraction method using red-nmf algorithm for detecting outbreak of some disease on twitter. AIP Conf Proc 1825:03

    Google Scholar 

  26. Hamme HV (2012) An on-line nmf model for temporal pattern learning: theory with application to automatic speech recognition. In: Proceedings of the 10th international conference on latent variable analysis and signal separation, LVA/ICA’12. Springer, Berlin, pp 306–313

  27. Sandler R, Lindenbaum M (2011) Nonnegative matrix factorization with earth mover’s distance metric for image analysis. IEEE Trans Pattern Anal Mach Intell 33 (8):1590–1602

    Article  Google Scholar 

  28. Salehani YE, Gazor S (2017) Smooth and sparse regularization for nmf hyperspectral unmixing. IEEE J Selected Topics Appl Earth Observ Remote Sens PP (99):1–16

    Google Scholar 

  29. Qian Y, Jia S, Zhou J, Robles-Kelly A (2010) L1/2 sparsity constrained nonnegative matrix factorization for hyperspectral unmixing. In: 2010 International conference on digital image computing: techniques and applications, pp 447–453

  30. Qian Y, Jia S, Zhou J, Robles-Kelly A (2011) Hyperspectral unmixing via l1/2 sparsity-constrained nonnegative matrix factorization. IEEE Transon Geosc Remote Sens 49(11):4282–4297

    Article  Google Scholar 

  31. Miao L, Qi H (2007) Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization. IEEE Trans Geosc Remote Sens 45(3):765–777

    Article  Google Scholar 

  32. Févotte C, Idier J (2010) Algorithms for nonnegative matrix factorization with the β-divergence. Neural Comput 23(9):2421–2456

    Article  Google Scholar 

  33. Xu W, Liu X, Gong Y (2003) Document clustering based on non-negative matrix factorization. In: Proceedings of the 26th annual international ACM SIGIR conference on research and development in informaion retrieval, SIGIR ’03. ACM, New York, pp 267–273

  34. Guan N, Tao D, Luo Z, Bo Y (2012) Nenmf: an optimal gradient method for nonnegative matrix factorization. IEEE Trans Signal Process 60(6):2882–2898

    Article  Google Scholar 

  35. Pauca PV, Piper J, Plemmons RJ (2006) Nonnegative matrix factorization for spectral data analysis. Linear Algebra Appl 416(1):29–47

    Article  Google Scholar 

  36. Pauca VP, Piper J, Plemmons M, Giffin R (2004) Object characterization from spectral data using nonnegative factorization and information theory. AMOS Technical Conference

  37. Du B, Zhang M, Zhang L, Hu R, Dacheng T (2016) PLTD patch-based low-rank tensor decomposition for hyperspectral images. IEEE Trans Multimed 19 (1):67–79

    Article  Google Scholar 

  38. Hoyer PO (2002) Non-negative sparse coding. IEEE cs.ne/0202009(02):557–565

    Google Scholar 

  39. Vavasis SA (2009) On the complexity of nonnegative matrix factorization. SIAM J Optim 20(3):1364–1377

    Article  Google Scholar 

  40. Swayze GA, Clark RN, King TV, Gallagher A, Calvin WM (1993) The U.S. geological survey, digital spectral library: Version 1: 0.2 to 3.0 m. In: Bulletin of the American astronomical society, p 1033

  41. Wang W, Qian Y (2015) Adaptive L1/2 sparsity-constrained nmf with half-thresholding algorithm for hyperspectral unmixing. IEEE J Selected Topics Appl Earth Observ Remote Sens 8(6):2618–2631

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang Xu or Shijun Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Jia, M., Xu, C. et al. Joint hyperspectral unmixing for urban computing. Geoinformatica 24, 247–265 (2020). https://doi.org/10.1007/s10707-019-00375-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-019-00375-w

Keywords

Navigation