Advertisement

A dynamic approach for presenting local and global information in geospatial network visualizations

  • Lingbo Zou
  • Stephen BrooksEmail author
Article
  • 22 Downloads

Abstract

We present a dynamic approach for revealing the underlying information in locally cluttered areas within a geo-spatial connected graph while maintaining global edge trends. Two time series data-flow visualization approaches at both local and global scales are proposed respectively: a stream model focuses on data flows within the local area while a hub model addresses the relations between groups of nodes across the graph. The computational complexity and quantitative performance analysis on three different datasets were conducted to examine the scalability of the visualization model. The simulation results show that the central algorithms in our approach are able to achieve acceptable performance in real world test cases. Finally, our model’s effectiveness is demonstrated by two significant case studies in different application fields.

Keywords

Information visualization Geo-spatial networks Location based networks Time-series data visualization Layout manipulation 

Notes

References

  1. 1.
    Barnes J, Hut P (1986) A hierarchical O(NlogN) force-calculation algorithm. Nature 324(6096):446–449CrossRefGoogle Scholar
  2. 2.
    Barrault M (2001) A methodology for placement and evaluation of area map labels. Comput Environ Urban Syst 25(1):33–52CrossRefGoogle Scholar
  3. 3.
    Bostock M, Ogievetsky V, Heer J (2011) D3: Data-driven documents. IEEE Trans Vis Comput Graph 17(12):2301–2309CrossRefGoogle Scholar
  4. 4.
    Brewer CA, Buttenfield BP (2009) Mastering map scale: balancing workloads using display and geometry change in multi-scale mapping. GeoInformatica 14(2):221–239CrossRefGoogle Scholar
  5. 5.
    Carstensen LW (1987) A comparison of simple mathematical approaches to the placement of spot symbols. Cartographica 24(3):46–63CrossRefGoogle Scholar
  6. 6.
    Consens MP, Cruz IF, Mendelzon AO (1992) Visualizing queries and querying visualizations. ACM SIGMOD Rec 21(1):39–46CrossRefGoogle Scholar
  7. 7.
    Furnas GW (1986) Generalized fisheye views. SIGCHI Conference on Human Factors in Computing Systems, New York, NY 16-23Google Scholar
  8. 8.
    GitHub Inc. GitHub API v3, https://developer.github.com/v3/. Accessed Aug 2016
  9. 9.
    Google Inc. The Google Maps Geocoding API, https://developers.google.com/maps/documentation /geocoding/intro#Geocoding. Accessed Aug 2016
  10. 10.
    I. Grigorik. GitHub Archive, http://www.githubarchive.org. Accessed Aug 2016
  11. 11.
    Guo D, Peuquet DJ, Gahegan M (2003) ICEAGE: Interactive Clustering and Exploration of Large and High-Dimensional Geodata. Geoinformatica 7(3):229–253CrossRefGoogle Scholar
  12. 12.
    Henry N, Fekete JD, McGuffin MJ (2007) Nodetrix: a hybrid visualization of social networks. IEEE Trans Vis Comput Graph 13(6):1302–1309CrossRefGoogle Scholar
  13. 13.
    Hirsch SA (1982) An algorithm for automatic name placement around point data. The American Cartographer 9(1):5–17CrossRefGoogle Scholar
  14. 14.
    Holten D (2006) Hierarchical edge bundles: visualization of adjacency relations in hierarchical data. IEEE Trans Vis Comput Graph 12(5):741–748CrossRefGoogle Scholar
  15. 15.
    D. Holten and J. J. van Wijk. Force-directed edge bundling for graph visualization. In Computer Graphics Forum, volume 28, pages 983–990. Wiley Online Library, 2009Google Scholar
  16. 16.
    J. Patokallio and Contentshare Pte Ltd. OpenFlights, http://openflights.org/. Accessed Aug 2016
  17. 17.
    L. W. Johnson and R. D. Riess. Numerical analysis. Addison-wesley, 1982Google Scholar
  18. 18.
    T. Klein, M. van der Zwan, and A. Telea. Dynamic multiscale visualization of flight data. Computer Vision Theory & Applications, volume 1, pages 104–114. IEEE, 2014Google Scholar
  19. 19.
    S. Ko, S. Afzal, S. Walton, Y. Yang, J. Chae, A. Malik, Y. Jang, M. Chen, and D. Ebert. Analyzing high-dimensional multivariate network links with integrated anomaly detection, highlighting and exploration. In IEEE Conference on Visual Analytics Science and Technology, pages 83–92. IEEE, 2014Google Scholar
  20. 20.
    A. Lambert, R. Bourqui, and D. Auber. 3D edge bundling for geographical data visualization. In Information Visualisation, pages 329–335. IEEE, 2010Google Scholar
  21. 21.
    H. Lam, E. Bertini, P. Isenberg, C. Plaisant and S. Carpendale, "Empirical studies in information visualization: seven scenarios," in IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 9, pages 1520–1536, Sept. 2012Google Scholar
  22. 22.
    S. Libeskind, Euclidean and transformational geometry: a deductive inquiry, pages 110–112, 2007Google Scholar
  23. 23.
    K. L. Ma and D. M. Camp. High performance visualization of time-varying volume data over a wide-area network. In ACM/IEEE 2000 Conference on supercomputing, pages 29–29. IEEE, 2000Google Scholar
  24. 24.
    A. M. MacEachren, M. Gahegan, W. Pike, I. Brewer, G. Cai, E. Lengerich, and F. Hardistry. Geovisualization for knowledge construction and decision support. Computer Graphics and Applications, IEEE, 24(1):13–17, 2004Google Scholar
  25. 25.
    MacEachren AM, Kraak MJ (2001) Research challenges in geovisualization. Cartogr Geogr Inf Sci 28(1):3–12CrossRefGoogle Scholar
  26. 26.
    McGuffin MJ, Jurisica I (2009) Interaction techniques for selecting and manipulating subgraphs in network visualizations. IEEE Trans Vis Comput Graph 15(6):937–944CrossRefGoogle Scholar
  27. 27.
    Mukherjea S, Foley JD (1995) Visualizing the world-wide web with the navigational view builder. Computer Networks and ISDN Systems 27(6):1075–1087CrossRefGoogle Scholar
  28. 28.
    Panse C, Sips M, Keim DA, North SC (2006) Visualization of geo-spatial point sets via global shape transformation and local pixel placement. IEEE Trans Vis Comput Graph 12(5):749–756CrossRefGoogle Scholar
  29. 29.
    Phillips RJ, Noyes L (1982) An investigation of visual clutter in the topographic base of a geological map. Cartogr J 19(2):122–132CrossRefGoogle Scholar
  30. 30.
    Rosenholtz R, Li Y, Nakano L (2007) Measuring visual clutter. J Vis 7(2):17–17CrossRefGoogle Scholar
  31. 31.
    Rylov MA, Reimer AW (2015) Improving label placement quality by considering basemap detail with a raster-based approach. Geoinformatica 19(3):463–486CrossRefGoogle Scholar
  32. 32.
    A. Telea and O. Ersoy. Image-based edge bundles: Simplified visualization of large graphs. In Computer Graphics Forum, volume 29, pages 843–852. Wiley Online Library, 2010Google Scholar
  33. 33.
    Tufte ER (1983) The visual display of quantitative information. Graphics Press, ConnGoogle Scholar
  34. 34.
    United States Department of Transportation. T-100 Domestic Market Database, http://www.transtats.bts.gov/. Accessed Aug 2016
  35. 35.
    N. Wong, S. Carpendale, and S. Greenberg. Edgelens: An interactive method for managing edge congestion in graphs. In IEEE Symposium on Information Visualization, pages 51–58. IEEE, 2003Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Computer ScienceDalhousie UniversityHalifaxCanada

Personalised recommendations