FeaturEyeTrack: automatic matching of eye tracking data with map features on interactive maps

A Correction to this article was published on 02 May 2019

This article has been updated


Map reading is a visual task that can strongly vary between individuals and maps of different characteristics. Aspects such as where, when, how long, and in which sequence information on a map is looked at can reveal valuable insights for both the map design process and to better understand cognitive processes of the map user. Contrary to static maps, for which many eye tracking studies are reported in the literature, established methods for tracking and analyzing visual attention on interactive maps are yet missing. In this paper, we present a framework called FeaturEyeTrack that allows to automatically log the cartographic features that have been inspected as well as the mouse input during the interaction with digital interactive maps. In particular, the novelty of FeaturEyeTrack lies in matching of gaze with the vector model of the current map visualization, therefore enabling a very detailed analysis without the requirement for manual annotation. Furthermore, we demonstrate the benefits of this approach in terms of manual work, level of detail and validity compared to state-of-the-art methods through a case study on an interactive cartographic web map.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Change history

  • 02 May 2019

    The original version of this article unfortunately contained a mistake. Figure 10a and b were interchanged during the publishing process.


  1. 1.

    A preliminary version of this framework was presented as a short paper at the AGILE Conference in 2017 [29].


  1. 1.

    Alaçam Ö, Dalcı M (2009) A usability study of WebMaps with eye tracking tool: the effects of iconic representation of information. In: International conference on human-computer interaction, vol 5610 LNCS. Springer, pp 12–21. https://doi.org/10.1007/978-3-642-02574-7_2

  2. 2.

    Andrienko G, Andrienko N, Burch M, Weiskopf D (2012) Visual analytics methodology for eye movement studies. IEEE Trans Vis Comput Graph 18(12):2889–2898. https://doi.org/10.1109/TVCG.2012.276

    Article  Google Scholar 

  3. 3.

    ArcGIS Online (2018) http://www.esri.com/software/arcgis/arcgisonline

  4. 4.

    Blascheck T, Kurzhals K, Raschke M, Burch M, Weiskopf D, Ertl T (2014) State-of-the-Art of visualization for eye tracking data. In: Eurographics conference on visualization (EuroVis). https://doi.org/10.2312/eurovisstar.20141173. The Eurographics Association, pp 1–20

  5. 5.

    Borji A, Itti L (2013) State-of-the-art in visual attention modeling. IEEE Trans Pattern Anal Mach Intell 35(1):185–207. https://doi.org/10.1109/TPAMI.2012.89

    Article  Google Scholar 

  6. 6.

    Brewer CA (2016) Designing better maps, 2nd edn. Esri Press, Redlands

    Google Scholar 

  7. 7.

    Brodersen L, Andersen HHK, Weber S (2001) Applying eye-movement tracking for the study of map perception and map design, vol 4. Kort & Matrikelstyrelsen, Copenhagen

    Google Scholar 

  8. 8.

    Brychtová A (2015) Exploring the influence of colour distance and legend position on choropleth maps readability. In: Modern trends in cartography: selected papers of CARTOCON 2014. https://doi.org/10.1007/978-3-319-07926-4_23. Springer International Publishing, pp 303–314

  9. 9.

    Brychtová A, Çöltekin A (2016) An empirical user study for measuring the influence of colour distance and font size in map reading using eye tracking. Cartogr J 53(3):202–212. https://doi.org/10.1179/1743277414Y.0000000103

    Article  Google Scholar 

  10. 10.

    Cartwright WE, Hunter GJ (2001) Towards a methodology for the evaluation of multimedia geographical information products. GeoInformatica 5 (3):291–315. https://doi.org/10.1023/A:1011438215072

    Article  Google Scholar 

  11. 11.

    Castner HW, Eastman RJ (1985) Eye-movement parameters and perceived map complexity - II. Cartogr Geogr Inf Sci 12(1):29–40. https://doi.org/10.1559/152304085783914712

    Article  Google Scholar 

  12. 12.

    Çöltekin A, Heil B, Garlandini S, Fabrikant SI (2009) Evaluating the effectiveness of interactive map interface designs: a case study integrating usability metrics with eye-movement analysis. Cartogr Geogr Inf Sci 36(1):5–17 . https://doi.org/10.1559/152304009787340197

    Article  Google Scholar 

  13. 13.

    Çöltekin A, Fabrikant SI, Lacayo M (2010) Exploring the efficiency of users’ visual analytics strategies based on sequence analysis of eye movement recordings. Int J Geogr Inf Sci 24(10):1559–1575. https://doi.org/10.1080/13658816.2010.511718

    Article  Google Scholar 

  14. 14.

    Çöltekin A, Demsar U, Brychtová A, Vandrol J (2014) Eye-hand coordination during visual search on geographic displays. In: Proceedings of the 2nd international workshop on eye tracking for spatial research (ET4S 2014), pp 12–16

  15. 15.

    Dong W, Liao H, Roth RE, Wang S (2014) Eye tracking to explore the potential of enhanced imagery basemaps in web mapping. Cartogr J 51(4):313–329. https://doi.org/10.1179/1743277413Y.0000000071

    Article  Google Scholar 

  16. 16.

    Duchowski AT (2002) A breadth-first survey of eye-tracking applications. Behav Res Methods Instrum Comput 34(4):455–470. https://doi.org/10.3758/BF03195475

    Article  Google Scholar 

  17. 17.

    Duchowski AT (2017) Eye tracking methodology: theory and practice, 3rd edn. Springer International Publishing, Berlin

    Book  Google Scholar 

  18. 18.

    Duchowski AT, Krejtz K, Krejtz I, Biele C, Niedzielska A, Kiefer P, Raubal M, Giannopoulos I (2018) The index of pupillary activity: measuring cognitive load vis-à-vis task difficulty with pupil oscillation. In: Proceedings of the 2018 CHI conference on human factors in computing systems, CHI ’18. ACM, New York, pp 282:1–282:13. https://doi.org/10.1145/3173574.3173856

  19. 19.

    Fabrikant SI, Goldsberry K (2005) Thematic relevance and perceptual salience of dynamic geovisualization displays. In: Proceedings of the 22th international cartographic conference, Coruña, Spain, pp 11–16

  20. 20.

    Fabrikant SI, Lobben AK (2009) Introduction: cognitive issues in geographic information visualization. Cartographica: the International Journal for Geographic Information and Geovisualization 44(3):139–143. https://doi.org/10.3138/carto.44.3.139

    Article  Google Scholar 

  21. 21.

    Fabrikant SI, Rebich-Hespanha S, Andrienko N, Andrienko G, Montello DR (2008) Novel method to measure inference affordance in static small-multiple map displays representing dynamic processes. Cartogr J 45(3):201–215. https://doi.org/10.1179/000870408X311396

    Article  Google Scholar 

  22. 22.

    Fabrikant SI, Hespanha SR, Hegarty M (2010) Cognitively inspired and perceptually salient graphic displays for efficient spatial inference making. Ann Assoc Am Geogr 100(1):13–29. https://doi.org/10.1080/00045600903362378

    Article  Google Scholar 

  23. 23.

    Fischer B, Ramsperger E (1984) Human express saccades: extremely short reaction times of goal directed eye movements. Exp Brain Res 57(1):191–195. https://doi.org/10.1007/BF00231145

    Article  Google Scholar 

  24. 24.

    Fogarty C, Stern JA (1989) Eye movements and blinks: their relationship to higher cognitive processes. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology 8(1):35–42

    Article  Google Scholar 

  25. 25.

    Gaffuri J (2012) Toward web mapping with vector data. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), vol 7478 LNCS. Springer, pp 87–101, DOI https://doi.org/10.1007/978-3-642-33024-7_7

  26. 26.

    Garlandini S, Fabrikant SI (2009) Evaluating the effectiveness and efficiency of visual variables for geographic information visualization. In: Conference on spatial information theory (COSIT’09), vol 5756. Springer, pp 195–211. https://doi.org/10.1007/978-3-642-03832-7_12

  27. 27.

    Giannopoulos I, Kiefer P, Raubal M (2012) Geogazemarks: providing gaze history for the orientation on small display maps. In: Proceedings of the 14th ACM international conference on multimodal interaction (ICMI ’12). ACM Press, New York, 20120036433, pp 165–172. https://doi.org/10.1145/2388676.2388711

  28. 28.

    Göbel F, Giannopoulos I, Raubal M (2016) The importance of visual attention for adaptive interfaces. Proceedings of the 18th international conference on human-computer interaction with mobile devices and services adjunct (MobileHCI ’16), pp 930–935. https://doi.org/10.1145/2957265.2962659

  29. 29.

    Göbel F, Kiefer P, Raubal M (2017) FeaturEyeTrack: a vector tile-based eye tracking framework for interactive maps. In: Bregt A, Sarjakoski T, van Lammeren R, Rip F (eds) Societal geo-innovation: short papers, posters and poster abstracts of the 20th AGILE conference on geographic information science. Wageningen, The Netherlands

  30. 30.

    Göbel F, Kiefer P, Giannopoulos I, Duchowski AT, Raubal M (2018) Improving map reading with gaze-adaptive legends. In: ETRA ’18: 2018 symposium on eye tracking research & applications. ACM, DOI https://doi.org/10.1145/3204493.3204544

  31. 31.

    Hess EH, Polt JM (1964) Pupil size in relation to mental activity during simple problem-solving. Science 143(3611):1190–1192. https://doi.org/10.1126/science.143.3611.1190

    Article  Google Scholar 

  32. 32.

    Holmqvist K, Andersson R (2017) Eye tracking: a comprehensive guide to methods and measures. Lund, Sweden: Lund Eye-Tracking Research Institude

  33. 33.

    Jacob RJK (1993) Eye movement-based human-computer interaction techniques: toward non-command interfaces. In: Advances in human-computer interaction, vol 4. Ablex Publishing Co, pp 151–190

  34. 34.

    Just MA, Carpenter PA (1976) Eye fixations and cognitive processes. Cogn Psychol 8(4):441–480. https://doi.org/10.1016/0010-0285(76)90015-3

    Article  Google Scholar 

  35. 35.

    Just MA, Carpenter PA (1980) A theory of reading: from eye fixations to comprehension. Psychol Rev 87(4):329–354. https://doi.org/10.1037/0033-295X.87.4.329

    Article  Google Scholar 

  36. 36.

    Kiefer P, Giannopoulos I (2012) Gaze map matching: mapping eye tracking data to geographic vector features. In: Proceedings of the 20th international conference on advances in geographic information systems (SIGSPATIAL ’12). ACM, New York, pp 359–368, DOI https://doi.org/10.1145/2424321.2424367

  37. 37.

    Kiefer P, Giannopoulos I, Raubal M (2013) Using eye movements to recognize activities on cartographic maps. In: Proceedings of the 21st SIGSPATIAL international conference on advances in geographic information systems, pp 498–501. https://doi.org/10.1145/2525314.2525467

  38. 38.

    Kiefer P, Giannopoulos I, Raubal M (2014) Where am I? investigating map matching during self-localization with mobile eye tracking in an urban environment. Trans in GIS 18(5):660–686. https://doi.org/10.1111/tgis.12067

    Article  Google Scholar 

  39. 39.

    Kiefer P, Giannopoulos I, Duchowski A, Raubal M (2016) Measuring cognitive load for map tasks through pupil diameter. In: Proceedings of the 9th international conference on geographic information science (GIScience 2016), vol 9927 LNCS. Springer International Publishing, pp 323–337, DOI https://doi.org/10.1007/978-3-319-45738-3_21

  40. 40.

    Kiefer P, Giannopoulos I, Anagnostopoulos VA, Schöning J, Raubal M (2017) Controllability matters: the user experience of adaptive maps. GeoInformatica 21(3):619–641. https://doi.org/10.1007/s10707-016-0282-x

    Article  Google Scholar 

  41. 41.

    Kiefer P, Giannopoulos I, Raubal M, Duchowski A (2017) Eye tracking for spatial research: cognition, computation, challenges. Spat Cogn Comput 17(1–2). https://doi.org/10.1080/13875868.2016.1254634

  42. 42.

    Kraak JM, Brown A (2000) Web cartography - developments and prospects. Taylor & Francis, London

    Book  Google Scholar 

  43. 43.

    Krassanakis V (2013) Exploring the map reading process with eye movement analysis laboratory setup and analysis software. In: Proceedings of the 1st international workshop on eye tracking for spatial research (in conjunction with COSIT 2013), pp 2–7

  44. 44.

    Land M, Tatler B (2009) Looking and acting: vision and eye movements in natural behaviour. Oxford University Press, London

    Book  Google Scholar 

  45. 45.

    Land M, Mennie N, Rusted J (1999) The roles of vision and eye movements in the control of activities of daily living. Perception 28(11):1311–1328. https://doi.org/10.1068/p2935

    Article  Google Scholar 

  46. 46.

    Lewis C (1982) Using the “thinking Aloud” method in cognitive interface design. Tech. rep. IBM Thomas J. Watson Research Center, Yorktown Heights

  47. 47.

    Lloyd RE (2005) Attention on maps. Cartographic perspectives: 28–57. https://doi.org/10.14714/CP52.377

  48. 48.

    Lobben AK (2004) Tasks, strategies, and cognitive processes associated with navigational map reading: a review perspective. Prof Geogr 56(2):270–281

    Google Scholar 

  49. 49.

    MacEachren AM (2004) How maps work representation, visualization, and design. Guilford Press, New York

    Google Scholar 

  50. 50.

    MacEachren AM, Kraak MJ (2001) Research challenges in geovisualization. Cartogr Geogr Inf Sci 28(1):3–12. https://doi.org/10.1559/152304001782173970

    Article  Google Scholar 

  51. 51.

    Montello DR (2002) Cognitive map-design research in the twentieth century: theoretical and empirical approaches. Cartogr Geogr Inf Sci 29(3):283–304. https://doi.org/10.1559/152304002782008503

    Article  Google Scholar 

  52. 52.

    Nielsen J (1993) Usability engineering. Morgan Kaufmann Publishers Inc, San Francisco

    Book  Google Scholar 

  53. 53.

    Noton D, Stark L (1971) Eye movements and visual perception. Sci Am 224(6):35–43

    Google Scholar 

  54. 54.

    Ooms K, De Maeyer P, Fack V (2010) Analysing eye movement patterns to improve map design. International archives of the photogrammetry. Remote sensing and spatial information sciences - ISPRS Archives, vol 38

  55. 55.

    Ooms K, De Maeyer P, Fack V, Van Assche E, Witlox F (2012) Interpreting maps through the eyes of expert and novice users. Int J Geogr Inf Sci 26 (10):1773–1788. https://doi.org/10.1080/13658816.2011.642801

    Article  Google Scholar 

  56. 56.

    Ooms K, Çöltekin A, De Maeyer P, Dupont L, Fabrikant S, Incoul A, Kuhn M, Slabbinck H, Vansteenkiste P, Van der Haegen L (2015) Combining user logging with eye tracking for interactive and dynamic applications. Behav Res Methods 47(4):977–993. https://doi.org/10.3758/s13428-014-0542-3

    Article  Google Scholar 

  57. 57.

    Peterson MP (2008) International perspectives on maps and the internet. Lecture notes in geoinformation and cartography. Springer, Berlin

    Book  Google Scholar 

  58. 58.

    Pfeuffer K, Vidal M, Turner J, Bulling A, Gellersen H (2013) Pursuit calibration: making gaze calibration less tedious and more flexible. In: Proceedings of the 26th annual ACM symposium on user interface software and technology (UIST ’13). ACM Press, New York, pp 261–270. https://doi.org/10.1145/2501988.2501998

  59. 59.

    Poole A, Ball LJ (2006) Encyclopedia of human computer interaction. IGI global. https://doi.org/10.4018/978-1-59140-562-7

  60. 60.

    Popelka S, Brychtova A, Brus J, Vov̌enílek V (2012) Advanced map optimalization based on eye-tracking, cartography - a tool for spatial analysis. Carlos Bateira, IntechOpen. https://doi.org/10.5772/46190

  61. 61.

    Pupil Labs (2018) https://pupil-labs.com/pupil/

  62. 62.

    Raper J (2007) Geographic relevance. J Doc 63(6):836–852. https://doi.org/10.1108/00220410710836385

    Article  Google Scholar 

  63. 63.

    Robinson AH (1952) The look of maps: an examination of cartographic design. Esri Press, Redlands

    Google Scholar 

  64. 64.

    Robinson DA (1965) The mechanics of human smooth pursuit eye movement. J Physiol 180(3):569–591

    Article  Google Scholar 

  65. 65.

    Salvucci DD, Goldberg JH (2000) Identifying fixations and saccades in eye-tracking protocols. Proceedings of the eye tracking research and applications symposium (ETRA ’00), pp 71–78. https://doi.org/10.1145/355017.355028

  66. 66.

    Slocum TA, Blok C, Jiang B, Koussoulakou A, Montello DR, Fuhrmann S, Hedley NR (2001) Cognitive and usability issues in geovisualization. Cartogr Geogr Inf Sci 28 (1):61–75. https://doi.org/10.1559/152304001782173998

    Article  Google Scholar 

  67. 67.

    Slocum TA, McMaster RB, Kessler FC, Howard HH (2009) Thematic cartography and geovisualization, 3rd edn. Pearson, Upper Saddle River

    Google Scholar 

  68. 68.

    SmartEye MAPPS (2018) http://smarteye.se/wp-content/uploads/2015/01/MAPPS-product-sheet.pdf

  69. 69.

    Steinke T (1987) Eye movement studies in cartography and related fields. Cartographica 24(2):40–73

    Article  Google Scholar 

  70. 70.

    Strube G (1992) The role of cognitive science in knowledge engineering. In: Proceedings of the first joint workshop on contemporary knowledge engineering and cognition. Springer, pp 161–174

  71. 71.

    Tobii SDK (2018) http://developer.tobii.com/tobii-sdk-guide

  72. 72.

    Vidal M, Bulling A, Gellersen H (2012) Detection of smooth pursuits using eye movement shape features. Proceedings of the Symposium on Eye Tracking Research and Applications (ETRA ’12) 1(212):177. https://doi.org/10.1145/2168556.2168586

    Article  Google Scholar 

  73. 73.

    Voßkühler A, Nordmeier V, Kuchinke L, Jacobs AM (2008) OGAMA (open gaze and mouse analyzer): open-source software designed to analyze eye and mouse movements in slideshow study designs. Behav Res Methods 40(4):1150–1162. https://doi.org/10.3758/BRM.40.4.1150

    Article  Google Scholar 

  74. 74.

    Yarbus AL (1967) Eye movements and vision. Neuropsychologia 6(4):389–390. https://doi.org/10.1007/978-1-4899-5379-7

    Article  Google Scholar 

Download references


This work is supported by the Swiss National Science Foundation under Grant No.: 200021_162886.

Author information



Corresponding author

Correspondence to Fabian Göbel.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The ​original ​version ​of ​this ​article ​was ​revised: Figure 10a and b were interchanged during the publishing process.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Göbel, F., Kiefer, P. & Raubal, M. FeaturEyeTrack: automatic matching of eye tracking data with map features on interactive maps. Geoinformatica 23, 663–687 (2019). https://doi.org/10.1007/s10707-019-00344-3

Download citation


  • Eye tracking
  • Eye movement analysis
  • Interactive maps
  • User logging
  • Human computer interaction