Skip to main content

Spatio-temporal access methods: a survey (2010 - 2017)

Abstract

The volume of spatio-temporal data is growing at a rapid pace due to advances in location-aware devices, e.g., smartphones, and the popularity of location-based services, e.g., navigation services. A number of spatio-temporal access methods have been proposed to support efficient processing of queries over the spatio-temporal data. Spatio-temporal access methods can be classified according to the type of data being indexed into the following categories: (1) indexes for historical spatio-temporal data, (2) indexes for current and recent spatio-temporal data, (3) indexes for future spatio-temporal data, (4) indexes for past, present, and future spatio-temporal data, (5) indexes for spatio-temporal data with associated textual data, and (6) parallel and distributed spatio-temporal systems and indexes. This survey is Part 3 of our previous surveys on the same subject (Mokbel et al. IEEE Data Eng Bull 26(2):40–49, 2003; Nguyen-Dinh et al. IEEE Data Eng Bull 33(2):46–55, 2010). In this survey, we present an overview and a broad classification of the spatio-temporal access methods published between 2010 and 2017.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Abdelguerfi M, Givaudan J, Shaw K, Ladner R (2002) The 2-3TR-tree, a trajectory-oriented index structure for fully evolving valid-time spatio-temporal datasets. In: ACM-GIS, pp 29–34

  2. 2.

    Agarwal PK, Arge L, Erickson J (2000) Indexing moving points. In: Proceedings of the nineteenth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems (PODS), pp 175–186. ACM

  3. 3.

    Ahmed P, Hasan M, Kashyap A, Hristidis V, Tsotras VJ (2017) Efficient computation of top-k frequent terms over spatio-temporal ranges. In: The international conference on management of data (SIGMOD’17), pp 1227–1241

  4. 4.

    Akdogan A, Shahabi C, Demiryurek U (2014) ToSS-it: A cloud-based throwaway spatial index structure for dynamic location data. In: The IEEE international conference on mobile data management (MDM’14), pp 249–258

  5. 5.

    Akdogan A, Shahabi C, Demiryurek U (2016) D-toSS: A distributed throwaway spatial index structure for dynamic location data. IEEE Trans Knowl Data Eng (TKDE) 28(9):2334–2348

    Article  Google Scholar 

  6. 6.

    Akman V, Franklin WR, Kankanhalli M, Narayanaswami C (1989) Geometric computing and uniform grid technique. Comput Aided Des 21(7):410–420

    Article  Google Scholar 

  7. 7.

    Alarabi L, Mokbel MF (2017) A demonstration of ST-hadoop: A mapreduce framework for big spatio-temporal data. The Proceedings of the VLDB Endowment (PVLDB’17) 10(12):1961–1964

    Article  Google Scholar 

  8. 8.

    Aref WG, Samet H (1990) Efficient processing of window queries in the pyramid data structure. In: Proceedings of the ninth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems, pp 265–272

  9. 9.

    Atluri V, Adam NR, Youssef M (2003) Towards a unified index scheme for mobile data and customer profiles in a location-based service environment. In: Workshop on next generation geospatial information (NG2i’03). Citeseer

  10. 10.

    Atluri V, Guo Q (2005) Unified index for mobile object data and authorizations. In: European symposium on research in computer security, pp 80–97. Springer

  11. 11.

    Atluri V, Shin H (2007) Efficient security policy enforcement in a location based service environment. In: IFIP Annual conference on data and applications security and privacy, pp 61–76. Springer

  12. 12.

    Bayer R, MCCReight E (1972) Organization and maintenance of large ordered indexes. Acta Informatica 1:173–189

    Article  Google Scholar 

  13. 13.

    Becker B, Gschwind S, Ohler T, Seeger B, Widmayer P (1996) An asymptotically optimal multiversion B-tree. Intern J Very Large Data Bases (VLDB Journal) 5(4):264–275

    Article  Google Scholar 

  14. 14.

    Beckmann N, Kriegel HP, Schneider R, Seeger B (1990) The R*-tree: An efficient and robust access method for points and rectangles. SIGMOD Rec 19(2):322–331

    Article  Google Scholar 

  15. 15.

    Belhassena A, HongZhi W (2017) Distributed skyline trajectory query processing. In: Proceedings of the ACM Turing 50th Celebration Conference-China, p 19. ACM

  16. 16.

    Bentley JL (1975) Multidimensional binary search trees used for associative searching. Commun ACM 18(9):509–517

    Article  Google Scholar 

  17. 17.

    Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Machine Learn Res 3(Jan):993–1022

    Google Scholar 

  18. 18.

    Bok KS, Seo DM, Shin SS, Yoo JS (2004) TPKDB-Tree: An index structure for efficient retrieval of future positions of moving objects. In: International conference on conceptual modeling, pp 67–78. Springer

  19. 19.

    Brisaboa NR, Ladra S (2009) Navarro, g.: k2-trees for compact web graph representation. In: The international symposium on string processing and information retrieval, vol 9, pp 18–30

  20. 20.

    Burton FW, Kollias JG, Matsakis D, Kollias V (1990) Implementation of overlapping B-trees for time and space efficient representation of collections of similar files. Comput J 33(3):279–280

    Article  Google Scholar 

  21. 21.

    Cai M, Revesz P (2000) Parametric R-tree: An index structure for moving objects. In: International conference on management of data and advances in data management (COMAD’00)

  22. 22.

    Cai R, Lu Z, Wang L, Zhang Z, Fu TZ, Winslett M (2017) DITIR: Distributed Index for high throughput trajectory insertion and real-time temporal range query. The Proceedings of the VLDB Endowment (PVLDB’17) 10(12):1865–1868

    Article  Google Scholar 

  23. 23.

    Cai Y, Ng R (2004) Indexing spatio-temporal trajectories with chebyshev polynomials. In: International conference on management of data (SIGMOD’04), pp 599–610. ACM

  24. 24.

    Cha SK, Hwang S, Kim K, Kwon K (2001) Cache-conscious concurrency control of main-memory indexes on shared-memory multiprocessor systems. In: The Proceedings of the VLDB Endowment (PVLDB’01), vol 1, pp 181–190

  25. 25.

    Chakka VP, Everspaugh A, Patel JM (2003) Indexing large trajectory data sets with SETI. In: The biennial conference on innovative data systems research (CIDR’03)

  26. 26.

    Chen JD, Meng XF (2007) Indexing future trajectories of moving objects in a constrained network. J Comput Sci Technol 22(2):245–251

    Article  Google Scholar 

  27. 27.

    Chen N, Shou LD, Chen G, Dong JX (2008) Adaptive indexing of moving objects with highly variable update frequencies. J Comput Sci Technol 23(6):998–1014

    Article  Google Scholar 

  28. 28.

    Chen S, Ooi BC, Tan KL, Nascimento MA (2008) ST2B-tree: A self-tunable spatio-temporal b+-tree index for moving objects. In: International conference on management of data (SIGMOD’11), pp 29–42. ACM

  29. 29.

    Chen W, Zhao L, Jiajie X, Zheng K, Zhou X (2014) Ranking based activity trajectory search. In: International conference on web information systems engineering, pp 170–185. Springer

  30. 30.

    Chon HD, Agrawal D, El Abbadi A (2001) Storage and retrieval of moving objects. In: International conference on mobile data management (MDM’01), pp 173–184. Springer

  31. 31.

    Christoforaki M, He J, Dimopoulos C, Markowetz A, Suel T (2011) Text vs. space: efficient geo-search query processing. In: The ACM international conference on information and knowledge management (CIKM’11), pp 423–432

  32. 32.

    Cudre-Mauroux P, Wu E, Madden S (2010) Trajstore: an adaptive storage system for very large trajectory data sets. In: The international conference on data engineering (ICDE’10), pp 109–120. IEEE

  33. 33.

    Dai J, Lu CT (2011) DIME: Disposable Index for moving objects. In: The IEEE international conference on mobile data management (MDM’11), vol 1, pp 68–77

  34. 34.

    De Almeida VT, Güting RH (2005) Indexing the trajectories of moving objects in networks. Geoinformatica 9(1):33–60

    Article  Google Scholar 

  35. 35.

    Ding X, Lu Y, Ding X, Zhao N, Wei Q (2007) An efficient index for moving objects with frequent updates. In: International conference on wireless communications, networking and mobile computing (wicom’07), pp 5951–5954. IEEE

  36. 36.

    Ding Z (2008) UTR-Tree: An index structure for the full uncertain trajectories of network-constrained moving objects. In: International conference on mobile data management (MDM’08), pp 33–40. IEEE

  37. 37.

    Dittrich J, Blunschi L, Salles MAV (2009) Indexing moving objects using short-lived throwaway indexes. In: International symposium on spatial and temporal databases, pp 189–207. Springer

  38. 38.

    Dittrich J, Quiané-Ruiz JA (2012) Efficient big data processing in hadoop mapreduce. Proceedings of the VLDB Endowment (PVLD’12) 5(12):2014–2015

    Article  Google Scholar 

  39. 39.

    Doraiswamy H, Vo HT, Silva CT, Freire J (2016) A GPU-based index to support interactive spatio-temporal queries over historical data. In: The IEEE international conference on data engineering (ICDE’16), pp 1086–1097

  40. 40.

    Elbassioni K, Elmasry A, Kamel I (2003) An efficient indexing scheme for multi-dimensional moving objects. In: International conference on database theory, pp 425–439. Springer

  41. 41.

    Eldawy A, Mokbel MF (2015) Spatialhadoop: a mapreduce framework for spatial data. In: The IEEE international conference on data engineering (ICDE’15), pp 1352–1363

  42. 42.

    Fan P, Li G, Yuan L, Li Y (2012) Vague continuous k-nearest neighbor queries over moving objects with uncertain velocity in road networks. Inf Syst 37(1):13–32

    Article  Google Scholar 

  43. 43.

    Fang Y, Cao J, Peng Y, Wang L (2008) Indexing the past, present and future positions of moving objects on fixed networks. In: International conference on computer science and software engineering, vol 4, pp 524–527. IEEE

  44. 44.

    Fang Y, Cao J, Wang J, Peng Y, Song W (2011) HTPR*-Tree: An efficient index for moving objects to support predictive query and partial history query. In: International conference on web-age information management (WAIM’11), pp 26–39. Springer

  45. 45.

    Feng J, Lu J, Zhu Y, Mukai N, Watanabe T (2007) Indexing of moving objects on road network using composite structure. In: International conference on knowledge-based and intelligent information and engineering systems, pp 1097–1104. Springer

  46. 46.

    Finkel RA, Bentley JL (1974) Quad trees a data structure for retrieval on composite keys. Acta informatica 4(1):1–9

    Article  Google Scholar 

  47. 47.

    Frentzos E (2003) Indexing objects moving on fixed networks. In: International symposium on spatial and temporal databases, pp 289–305. Springer

  48. 48.

    Ghanem TM, Hammad MA, Mokbel MF, Aref WG, Elmagarmid AK (2007) Incremental evaluation of sliding-window queries over data streams. IEEE Trans Knowl Data Eng (TKDE) 19(1):57–72

  49. 49.

    Gionis A, Indyk P, Motwani R, et al. (1999) Similarity search in high dimensions via hashing. In: The Proceedings of the VLDB Endowment (PVLDB’99), vol 99, pp 518–529

  50. 50.

    Gravano L, Ipeirotis PG, Jagadish HV, Koudas N, Muthukrishnan S, Srivastava D et al (2001) Approximate string joins in a database (almost) for free. In: The Proceedings of the VLDB Endowment (PVLDB’01), vol 1, pp 491–500

  51. 51.

    Guttman A (1984) R-trees: a dynamic index structure for spatial searching. SIGMOD Rec 14:47–57

    Article  Google Scholar 

  52. 52.

    Hadjieleftheriou M, Kollios G, Tsotras VJ, Gunopulos D (2002) Efficient indexing of spatiotemporal objects. In: International conference on extending database technology, pp 251–268. Springer

  53. 53.

    Han L, Huang L, Yang X, Pang W, Wang K (2016) A novel spatio-temporal data storage and index method for ARM-based hadoop server. In: International conference on cloud computing and security, pp 206–216. Springer

  54. 54.

    Han Y, Wang L, Zhang Y, Zhang W, Lin X (2015) Spatial keyword range search on trajectories. In: The international conference on database systems for advanced applications (DASFAA’15), pp 223–240

  55. 55.

    Hariharan R, Hore B, Li C, Mehrotra S (2007) Processing spatial-keyword (SK) queries in geographic information retrieval (GIR) systems. In: The international conference on scientific and statistical database management (SSDBM’07), pp 16–16

  56. 56.

    He Z, Kraak MJ, Huisman O, Ma X, Xiao J (2013) Parallel indexing technique for spatio-temporal data. ISPRS J Photogramm Remote Sens 78:116–128

    Article  Google Scholar 

  57. 57.

    Hendawi AM, Bao J, Mokbel MF, Ali M (2015) Predictive tree: an efficient index for predictive queries on road networks. In: The IEEE international conference on data engineering (ICDE’15), pp 1215–1226

  58. 58.

    Issa H, Damiani ML (2016) Efficient access to temporally overlaying spatial and textual trajectories. In: The IEEE international conference on mobile data management (MDM’16), vol 1, pp 262–271

  59. 59.

    Jackins CL, Tanimoto SL (1980) OCT-Trees and their use in representing three-dimensional objects. Comput Graphics and Image Process 14(3):249–270

    Article  Google Scholar 

  60. 60.

    Jensen CS, Lin D, Ooi BC (2004) Query and update efficient b+-tree based indexing of moving objects. In: The Proceedings of the VLDB Endowment (PVLDB’04), pp 768–779

  61. 61.

    Jensen CS, Lu H, Yang B (2009) Indexing the trajectories of moving objects in symbolic indoor space. In: International symposium on spatial and temporal databases, pp 208–227. Springer

  62. 62.

    Jeung H, Yiu ML, Zhou X, Jensen CS (2010) Path prediction and predictive range querying in road network databases. Intern J Very Large Data Bases (VLDB J) 19(4):585–602

    Article  Google Scholar 

  63. 63.

    Kim KS, Kim SW, Kim TW, Li KJ (2003) Fast indexing and updating method for moving objects on road networks. In: International conference on web information systems engineering workshops, pp 34–42. IEEE

  64. 64.

    Knuth D (1973) The art of computer programming

  65. 65.

    Kollios G, Gunopulos D, Tsotras VJ (1999) On indexing mobile objects. In: Proceedings of the eighteenth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems (PODS), pp 261–272. ACM

  66. 66.

    Kollios G, Tsotras VJ, Gunopulos D, Delis A, Hadjieleftheriou M (2001) Indexing animated objects using spatiotemporal access methods. IEEE Trans Knowl Data Eng (TKDE) 13(5):758–777

    Article  Google Scholar 

  67. 67.

    Kumar A, Tsotras VJ, Faloutsos C (1998) Designing access methods for bitemporal databases. IEEE Trans Knowl Data Eng (TKDE) 10(1):1–20

    Article  Google Scholar 

  68. 68.

    Kwon D, Lee S, Lee S (2002) Indexing the current positions of moving objects using the lazy update R-tree. In: International conference on mobile data management (MDM’03), pp 113–120. IEEE

  69. 69.

    Le TTT, Nickerson BG (2008) Efficient search of moving objects on a planar graph. In: International conference on advances in geographic information systems (SIGSPATIAL’08), p 41. ACM

  70. 70.

    Lee ML, Hsu W, Jensen CS, Cui B, Teo KL (2003) Supporting frequent updates in R-trees: a bottom-up approach. In: The Proceedings of the VLDB Endowment (PVLDB’03), pp 608–619

  71. 71.

    Liang Y (2011) A efficient indexing maintenance method for grouping moving objects with grid. pp 486–492 Elsevier

  72. 72.

    Liao W, Tang G, Jing N, Zhong Z (2006) VTPR-Tree: An efficient indexing method for moving objects with frequent updates. In: International conference on conceptual modeling, pp 120–129. Springer

  73. 73.

    Lin B, Mokhtar H, Pelaez-Aguilera R, Su J (2003) Querying moving objects with uncertainty. In: Vehicular technology conference (VTC’03), vol 4, pp 2783–2787. IEEE

  74. 74.

    Lin B, Su J (2005) Handling frequent updates of moving objects. In: International conference on information and knowledge management, pp 493–500. ACM

  75. 75.

    Lin D, Jensen CS, Ooi BC, Šaltenis S (2005) Efficient indexing of the historical, present, and future positions of moving objects. In: International conference on mobile data management (MDM’05), pp 59–66. ACM

  76. 76.

    Lin D, Jensen CS, Zhang R, Xiao L, Lu J (2011) A moving-object index for efficient query processing with peer-wise location privacy. The Proceedings of the VLDB Endowment (PVLDB’11) 5(1):37–48

    Article  Google Scholar 

  77. 77.

    Lin D, Zhang R, Zhou A (2006) Indexing fast moving objects for kNN queries based on nearest landmarks. Geoinformatica 10(4):423–445

    Article  Google Scholar 

  78. 78.

    Lin HY (2009) Indexing the trajectories of moving objects. International multi-conference of engineers and computer scientists

  79. 79.

    Liu H, Xu J, Zheng K, Liu C, Du L, Wu X (2017) Semantic-aware query processing for activity trajectories. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp 283–292. ACM

  80. 80.

    Liu Z, Liu X, Ge J, Bae H (2005) Indexing large moving objects from past to future with PCFI+-index. In: International conference on management of data and advances in data management (COMAD’05), pp 131–137

  81. 81.

    Lomet D, Salzberg B (1989) Access methods for multiversion data, vol 18. ACM

  82. 82.

    Luo W, Tan H, Chen L, Ni LM (2013) Finding time period-based most frequent path in big trajectory data. In: The international conference on management of data (SIGMOD’13), pp 713–724

  83. 83.

    Ma C, Lu H, Shou L, Chen G (2013) KSQ: Top-K similarity query on uncertain trajectories. IEEE Trans Knowl Data Eng (TKDE) 25(9):2049–2062

    Article  Google Scholar 

  84. 84.

    MacQueen J, et al. (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol 1, pp 281–297

  85. 85.

    Magdy A, Aly AM, Mokbel MF, Elnikety S, He Y, Nath S, Aref WG (2016) GeoTrend: Spatial trending queries on real-time microblogs. In: The ACM international conference on advances in geographic information systems (SIGSPATIAL’16), p 7

  86. 86.

    Magdy A, Mokbel MF, Elnikety S, Nath S, He Y (2014) Mercury: a memory-constrained spatio-temporal real-time search on microblogs. In: The IEEE international conference on data engineering (ICDE’14), pp 172–183

  87. 87.

    Mahmood AR, Aly AM, Kuznetsova T, Basalamah S, Aref WG (2018) Disk-based indexing of recent trajectories. ACM Transactions on Spatial Algorithms and Systems (TSAS) 4(3):7.1–7.27

  88. 88.

    Mahmood AR, Aref WG, Aly AM, Basalamah S (2014) Indexing recent trajectories of moving objects. In: The ACM international conference on advances in geographic information systems (SIGSPATIAL’14), pp 393–396

  89. 89.

    Meagher DJ (1980) OCTRee encoding: A new technique for the representation, manipulation and display of arbitrary 3-d objects by computer. Electrical and Systems Engineering Department Rensseiaer Polytechnic Institute Image Processing Laboratory

  90. 90.

    Mehta P, Skoutas D, Voisard A (2015) Spatio-temporal keyword queries for moving objects. In: The ACM international conference on advances in geographic information systems (SIGSPATIAL’15), p 55

  91. 91.

    Mokbel MF, Ghanem TM, Aref WG (2003) Spatio-temporal access methods. IEEE Data Eng Bull 26(2):40–49

    Google Scholar 

  92. 92.

    Morton GM (1966) A computer oriented geodetic data base and a new technique in file sequencing. International Business Machines Company, New York

    Google Scholar 

  93. 93.

    Mukai N, Feng J, Watanabe T (2004) Heuristic approach based on lambda-interchange for VRTPR-tree on specific vehicle routing problem with time windows. In: International conference on industrial, engineering and other applications of applied intelligent systems, pp 229–238. Springer

  94. 94.

    Mukai N, Feng J, Watanabe T (2004) Indexing approach for delivery demands with time constraints. In: Pacific rim international conference on artificial intelligence, pp 95–103. Springer

  95. 95.

    Nascimento MA, Silva JR (1998) Towards historical R-trees. In: Symposium on applied computing, pp 235–240. ACM

  96. 96.

    Nascimento MA, Silva JR, Theodoridis Y (1999) Evaluation of access structures for discretely moving points. In: Spatio-temporal database management, pp 171–189. Springer

  97. 97.

    Nguyen T, He Z, Chen YPP (2012) SeTPR*-tree: Efficient buffering for spatiotemporal indexes via shared execution. Comput J 56(1):115–137

    Article  Google Scholar 

  98. 98.

    Nguyen T, He Z, Zhang R, Ward P (2012) Boosting moving object indexing through velocity partitioning. The Proceedings of the VLDB Endowment (PVLDB’12) 5(9):860–871

    Article  Google Scholar 

  99. 99.

    Nguyen-Dinh LV, Aref WG, Mokbel MF (2010) Spatio-temporal access methods: Part 2 (2003-2010). IEEE Data Eng Bull 33(2):46–55

  100. 100.

    Ni J, Ravishankar CV (2005) PA-Tree: A parametric indexing scheme for spatio-temporal trajectories. In: International symposium on spatial and temporal databases, pp 254–272. Springer

  101. 101.

    Nievergelt J, Hinterberger H, Sevcik KC (1984) The grid file: an adaptable, symmetric multikey file structure. ACM Trans Database Syst (TODS) 9(1):38–71

    Article  Google Scholar 

  102. 102.

    Orenstein JA, Merrett TH (1984) A class of data structures for associative searching. In: Proceedings of the 3rd ACM SIGACT-SIGMOD symposium on Principles of database systems (PODS), pp 181–190. ACM

  103. 103.

    Patel JM, Chen Y, Chakka VP (2004) STRIPES: An efficient index for predicted trajectories. In: The international conference on management of data (SIGMOD’04), pp 637–646

  104. 104.

    Patroumpas K, Sellis T (2009) Monitoring orientation of moving objects around focal points. In: International symposium on spatial and temporal databases, pp 228–246. Springer

  105. 105.

    Pelanis M, Šaltenis S, Jensen CS (2006) Indexing the past, present, and anticipated future positions of moving objects. ACM Trans Database Syst (TODS) 31 (1):255–298

    Article  Google Scholar 

  106. 106.

    Pfoser D, Jensen CS, Theodoridis Y et al (2000) Novel approaches to the indexing of moving object trajectories. In: The Proceedings of the VLDB Endowment (PVLDB’00), pp 395–406

  107. 107.

    Popa IS, Zeitouni K, Oria V, Barth D, Vial S (2010) PARINET: A tunable access method for in-network trajectories. In: The IEEE international conference on data engineering (ICDE’10), pp 177–188. IEEE

  108. 108.

    Porkaew K, Lazaridis I, Mehrotra S (2001) Querying mobile objects in spatio-temporal databases. In: International symposium on spatial and temporal databases (SSTD’01), pp 59–78. Springer

  109. 109.

    Prabhakar S, Xia Y, Kalashnikov DV, Aref WG, Hambrusch SE (2002) Query indexing and velocity constrained indexing: Scalable techniques for continuous queries on moving objects. IEEE Trans Comput 51(10):1124–1140

    Article  Google Scholar 

  110. 110.

    Procopiuc CM, Agarwal PK, Har-Peled S (2002) Star-tree: an efficient self-adjusting index for moving objects. In: Workshop on algorithm engineering and experimentation, pp 178–193. Springer

  111. 111.

    Pugh W (1990) Concurrent maintenance of lists. In: Dept. of computer science, university of maryland, college park

  112. 112.

    Ranu S, Deepak P, Telang AD, Deshpande P, Raghavan S (2015) Indexing and matching trajectories under inconsistent sampling rates. In: The IEEE international conference on data engineering (ICDE’15), pp 999–1010

  113. 113.

    Ray S (2014) Towards high performance spatio-temporal data management systems. In: The IEEE international conference on mobile data management (MDM’14), vol 2, pp 19–22

  114. 114.

    Romero M, Brisaboa N, Rodríguez MA (2012) The SMO-index: A succinct moving object structure for timestamp and interval queries. In: Advances in geographic information systems, pp 498–501

  115. 115.

    Saltenis S, Jensen CS (2002) Indexing of moving objects for location-based services. In: International conference on data engineering (ICDE’02), pp 463–472. IEEE

  116. 116.

    Šaltenis S, Jensen CS, Leutenegger ST, Lopez MA (2000) Indexing the positions of continuously moving objects. In: International conference on management of data (SIGMOD’00), vol 29, pp 331–342. ACM

  117. 117.

    Sandu Popa I, Zeitouni K, Oria V, Barth D, Vial S (2011) Indexing in-network trajectory flows. Intern J Very Large Data Bases (VLDB J) 20(5):643–669

    Article  Google Scholar 

  118. 118.

    Schmiegelt P, Behrend A, Seeger B, Koch W (2014) A concurrently updatable index structure for predicted paths of moving objects. Data Knowl Eng 93:80–96

    Article  Google Scholar 

  119. 119.

    Senechal M (1993) Spatial tessellations: Concepts and applications of voronoi diagrams. Science 260(5111):1170–1173

    Article  Google Scholar 

  120. 120.

    Seo DM, Song SI, Park YH, Yoo JS, Kim MH (2008) Bdh-tree: A B+-tree based indexing method for very frequent updates of moving objects. In: International symposium on computer science and its applications (CSA’08), pp 314–319. IEEE

  121. 121.

    Shen B, Zhao Y, Li G, Zheng W, Qin Y, Yuan B, Rao Y (2017) V-Tree: Efficient kNN search on moving objects with road-network constraints. In: The IEEE international conference on data engineering (ICDE’17), pp 609–620

  122. 122.

    Šidlauskas D, Ross K, Jensen C, Šaltenis S (2011) Thread-level parallel indexing of update intensive moving-object workloads. Adv Spatial Temporal Database 6849:186–204

  123. 123.

    Šidlauskas D, Šaltenis S, Christiansen CW, Johansen JM, Šaulys D (2009) Trees or grids?: indexing moving objects in main memory. In: The ACM international conference on advances in geographic information systems (SIGSPATIAL’09), pp 236–245

  124. 124.

    Šidlauskas D, Šaltenis S, Jensen CS (2012) Parallel main-memory indexing for moving-object query and update workloads. In: The international conference on management of data (SIGMOD’12), pp 37–48

  125. 125.

    Silva YN, Xiong X, Aref WG (2009) The RUM-tree: supporting frequent updates in R-trees using memos. Intern J Very Large Data Bases (VLDB J) 18 (3):719–738

    Article  Google Scholar 

  126. 126.

    Singh M, Zhu Q, Jagadish H (2012) SWST: A disk based index for sliding window spatio-temporal data. In: The IEEE international conference on data engineering (ICDE’12), pp 342–353

  127. 127.

    Skovsgaard A, Sidlauskas D, Jensen CS (2014) Scalable top-k spatio-temporal term querying. In: The IEEE international conference on data engineering (ICDE’14), pp 148–159

  128. 128.

    Song Z, Roussopoulos N (2001) Hashing moving objects. In: International conference on mobile data management (MDM’01), pp 161–172. Springer

  129. 129.

    Song Z, Roussopoulos N (2003) SEB-Tree: An approach to index continuously moving objects. In: International conference on mobile data management (MDM’03), pp 340–344. Springer

  130. 130.

    Stantic B, Topor R, Terry J, Sattar A (2010) Advanced indexing technique for temporal data. Computer Science and Information Systems 7(4):679–703

  131. 131.

    Tanimoto S, Pavlidis T (1975) A hierarchical data structure for picture processing. Comput Graphics Image Process 4(2):104–119

    Article  Google Scholar 

  132. 132.

    Tao Y, Faloutsos C, Papadias D, Liu B (2004) Prediction and indexing of moving objects with unknown motion patterns. In: International conference on management of data (SIGMOD’04), pp 611–622. ACM

  133. 133.

    Tao Y, Papadias D (2001) Efficient historical R-trees. In: The international conference on scientific and statistical database management (SSDBM’01), p 0223. IEEE

  134. 134.

    Tao Y, Papadias D (2001) MV3R-tree: A spatio-temporal access method for timestamp and interval queries. In: The Proceedings of the VLDB Endowment (PVLDB’01), pp 431–440

  135. 135.

    Tao Y, Papadias D, Sun J (2003) The TPR*-tree: An optimized spatio-temporal access method for predictive queries. In: International conference on very large data bases (PVLDB’03), pp 790–801. VLDB endowment

  136. 136.

    Tayeb J, Ulusoy Ö, Wolfson O (1998) A quadtree-based dynamic attribute indexing method. Comput J 41(3):185–200

    Article  Google Scholar 

  137. 137.

    That DHT, Popa IS, Zeitouni K (2015) TRIFL: A generic trajectory index for flash storage. ACM Trans Spatial Algorithm Syst 1(2):6

    Article  Google Scholar 

  138. 138.

    Theodoridis Y, Vazirgiannis M, Sellis T (1996) Spatio-temporal indexing for large multimedia applications. In: International conference on multimedia computing and systems, pp 441–448. IEEE

  139. 139.

    To QC, Dang TK, Kung J (2011) OST-Tree: An access method for obfuscating spatio-temporal data in location based services. In: International conference on new technologies, mobility and security (NTMS’11), pp 1–5. IEEE

  140. 140.

    Toshniwal A, Taneja S, et al. (2014) Storm@ twitter. In: The international conference on management of data (SIGMOD’14), pp 147–156

  141. 141.

    Tung HDT, Jung YJ, Lee EJ, Ryu KH (2004) Moving point indexing for future location query. In: International conference on conceptual modeling, pp 79–90. Springer

  142. 142.

    (2018) Twitter. https://twitter.com

  143. 143.

    Tzouramanis T, Vassilakopoulos M, Manolopoulos Y (1998) Overlapping linear quadtrees: a spatio-temporal access method. In: International symposium on advances in geographic information systems, pp 1–7. ACM

  144. 144.

    Ulrich T (2000) Loose octrees. Game Programming Gems 1:434–442

    Google Scholar 

  145. 145.

    Valdés F, Güting RH (2017) Index-supported pattern matching on tuples of time-dependent values. GeoInformatica 21(3):429–458

    Article  Google Scholar 

  146. 146.

    Wang H, Belhassena A (2017) Parallel trajectory search based on distributed index. Inf Sci 388:62–83

    Article  Google Scholar 

  147. 147.

    Wang L, Zheng Y, Xie X, Ma WY (2008) A flexible spatio-temporal indexing scheme for large-scale GPS track retrieval. In: International conference on mobile data management (MDM’08), pp 1–8. IEEE

  148. 148.

    Wang S, Bao Z, Culpepper JS, Sellis T, Sanderson M, Qin X (2017) Answering top-k exemplar trajectory queries. In: The IEEE international conference on data engineering (ICDE’17), pp 597–608. IEEE

  149. 149.

    Wang X, Zhang Y, Zhang W, Lin X, Wang W (2015) AP-Tree: Efficiently support location-aware publish/subscribe. Intern J Very Large Data Bases (VLDB J.) 24(6):823–848

    Article  Google Scholar 

  150. 150.

    Xu X, Lu JHW (1990) RT-tree: An improved R-tree indexing structure for temporal spatial databases. In: The international symposium on spatial data handling, pp 1040–1049

  151. 151.

    Xie X, Lu H, Pedersen TB (2013) Efficient distance-aware query evaluation on indoor moving objects. In: The IEEE international conference on data engineering (ICDE’13), pp 434–445. IEEE

  152. 152.

    Xie X, Mei B, Chen J, Du X, Jensen CS (2016) Elite: an elastic infrastructure for big spatiotemporal trajectories. Intern J Very Large Data Bases (VLDB J) 25(4):473–493

    Article  Google Scholar 

  153. 153.

    Xiong X, Aref WG (2006) R-trees with update memos. In: The IEEE international conference on data engineering (ICDE’06), pp 22–22

  154. 154.

    Xiong X, Mokbel MF, Aref WG (2006) LUGRid: Update-tolerant grid-based indexing for moving objects. In: International conference on mobile data management (MDM’13), p 13

  155. 155.

    Xu X, Xiong L, Sunderam V (2016) D-grid: an in-memory dual space grid index for moving object databases. In: The IEEE international conference on mobile data management (MDM’16), pp 252–261

  156. 156.

    Xu X, Xiong L, Sunderam V, Liu J, Luo J (2015) Speed partitioning for indexing moving objects. In: The international symposium on spatial and temporal databases (SSTD’15), pp 216–234

  157. 157.

    Xu Y, Tan G (2014) Sim-Tree: indexing moving objects in large-scale parallel microscopic traffic simulation. In: ACM Conference on principles of advanced discrete simulation (PADS) (SIGSIM’14), pp 51–62

  158. 158.

    YAN Qy, MENG Fr (2004) Multiple version TPR-tree. Comput Eng Design 10:057

    Google Scholar 

  159. 159.

    Yan X, Guo J, Lan Y, Cheng X (2013) A biterm topic model for short texts. In: Proceedings of the 22nd international conference on World Wide Web, pp 1445–1456. ACM

  160. 160.

    Yao B, Li F, Hadjieleftheriou M, Hou K (2010) Approximate string search in spatial databases. In: The IEEE international conference on data engineering (ICDE’10), pp 545–556. IEEE

  161. 161.

    Yiu ML, Tao Y, Mamoulis N (2008) The Bdual-tree: Indexing moving objects by space filling curves in the dual space. Intern J Very Large Data Bases (VLDB J) 17(3):379–400

    Article  Google Scholar 

  162. 162.

    Yu Z, Liu Y, Yu X, Pu KQ (2015) Scalable distributed processing of k nearest neighbor queries over moving objects. IEEE Trans Knowl Data Eng (TKDE) 27(5):1383–1396

    Article  Google Scholar 

  163. 163.

    Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A, Meng X, Rosen J, Venkataraman S, Franklin MJ et al (2016) Apache spark: a unified engine for big data processing. Commun ACM 59(11):56–65

    Article  Google Scholar 

  164. 164.

    Zäschke T, Zimmerli C, Norrie MC (2014) The PH-tree: A space-efficient storage structure and multi-dimensional index. In: The international conference on management of data (SIGMOD’14), pp 397–408

  165. 165.

    Zheng B, Yuan NJ, Zheng K, Xie X, Sadiq S, Zhou X (2015) Approximate keyword search in semantic trajectory database. In: The IEEE international conference on data engineering (ICDE’15), pp 975–986. IEEE

  166. 166.

    Zheng K, Shang S, Yuan NJ, Yang Y (2013) Towards efficient search for activity trajectories. In: The IEEE international conference on data engineering (ICDE’13), pp 230–241. IEEE

  167. 167.

    Zheng K, Trajcevski G, Zhou X, Scheuermann P (2011) Probabilistic range queries for uncertain trajectories on road networks. In: The international conference on extending database technology (EDBT’11), pp 283–294

  168. 168.

    Zheng K, Zheng B, Xu J, Liu G, Liu A, Li Z (2016) Popularity-aware spatial keyword search on activity trajectories. World Wide Web 4(20):749–773

    Google Scholar 

  169. 169.

    Zhou P, Zhang D, Salzberg B, Cooperman G, Kollios G (2005) Close pair queries in moving object databases. In: Proceedings of the 13th annual ACM international workshop on Geographic information systems, pp 2–11. ACM

  170. 170.

    Zhu Y, Ren X, Feng J (2006) NCO-Tree: A spatio-temporal access method for segment-based tracking of moving objects. In: International conference on knowledge-based and intelligent information and engineering systems, pp 1191–1198. Springer

  171. 171.

    Zhu Y, Wang S, Zhou X, Zhang Y (2013) RUM+-Tree: A new multidimensional index supporting frequent updates. In: The international conference on web-age information management (WAIM’13), pp 235–240

Download references

Acknowledgements

This work has been partially supported by the National Science Foundation under Grant Number III-1815796.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ahmed R. Mahmood.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mahmood, A.R., Punni, S. & Aref, W.G. Spatio-temporal access methods: a survey (2010 - 2017). Geoinformatica 23, 1–36 (2019). https://doi.org/10.1007/s10707-018-0329-2

Download citation

Keywords

  • Spatio-temporal data
  • Indexing
  • Databases