Skip to main content

Advertisement

Log in

OSCAR: a framework to integrate spatial computing ability and data aggregation for emergency management of public health

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

Spatial computing has emerged a critical issue in emergency management of public health. Due to the complexity of spatial data structure and disperse character of spatio-temporal data, when emergency event of public health occurs, it is difficult to get the needed data and analysis it then make quick decision in a short time. In this paper, OSCAR: an Open Spatial Computing and data Resource platform were introduced including its components, framework, elements and two implementations. OSCAR provides a data resource aggregation platform to retrieve data from official statistic agencies through data service and database, scrawl related data from BBS and social media and mirror the environment data from earth observation data sites. All the dataset are arranged in data cubes according to their spatial and temporal dimensions. This mechanism ensures the feasibility and timeliness of time-sequence analysis of specific regions. The algorithms of spatial computing of public health are usually complicated and depend on particular computing environment, which is usually not default configuration of computer of nowadays. OSCAR deploys a series of computation images in a cloud-computing environment. The computation ability can be extended on-demand and thus the time of the computation can be shortened and limited in several minutes when it is needed. The two implementation of human rabies of China and H7N9 in China show the convenience of our platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Li K, Guan Y, Wang J, Smith G, Xu K, Duan L, Rahardjo A, Puthavathana P, Buranathai C, Nguyen T (2004) Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 430(6996):209–213

    Article  Google Scholar 

  2. Chen H, Smith G, Zhang S, Qin K (2005) H5N1 Virus outbreak in migratory waterfowl. Nature 436(7048):191

    Article  Google Scholar 

  3. Yu H, Wu JT, Cowling BJ, Liao Q, Fang VJ, Zhou S, Ni MY (2014) Effect of closure of live poultrymarkets on poultry-to-person transmission of avian influenza A H7N9 virus: an ecological study. The Lancet 383(9916):541–548

  4. Sallis JF, Frank LD, Saelens BE, Kraft MK (2004) Active transportation and physical activity: opportunities for collaboration on transportation and public health research. Transp Res A Policy Pract 38(4):249–268

    Article  Google Scholar 

  5. Rotz LD, Khan AS, Lillibridge SR, Ostroff SM, Hughes JM (2002) Public health assessment of potential biological terrorism agents. Emerg Infect Dis 8(2):225

    Article  Google Scholar 

  6. Wilson ME (1995) Travel and the emergence of infectious diseases. Emerg Infect Dis 1(2):39

    Article  Google Scholar 

  7. Martens P, Hall L (2000) Malaria on the move: human population movement and malaria transmission. Emerg Infect Dis 6(2):103

    Article  Google Scholar 

  8. Morens DM, Folkers GK, Fauci AS (2004) The challenge of emerging and re-emerging infectious diseases. Nature 430(6996):242–249

    Article  Google Scholar 

  9. Lederberg J (2000) Infectious history. Science 288(5464):287–293

    Article  Google Scholar 

  10. Dobson AP, Carper ER (1996) Infectious diseases and human population history. Bioscience 46(2):115–126

    Article  Google Scholar 

  11. Weiss RA, McMichael AJ (2004) Social and environmental risk factors in the emergence of infectious diseases. Nat Med 10(12s):S70

    Article  Google Scholar 

  12. Dugas AF, Hsieh Y-H, Levin SR, Pines JM, Mareiniss DP, Mohareb A, Gaydos CA, Perl TM, Rothman RE (2012) Google flu trends: correlation with emergency department influenza rates and crowding metrics. Clin Infect Dis 54(4):463–469

    Article  Google Scholar 

  13. Lazer D, Kennedy R, King G, Vespignani A (2014) The parable of Google flu: traps in big data analysis. Science 343(6176):1203–1205

    Article  Google Scholar 

  14. Ortiz JR, Zhou H, Shay DK, Neuzil KM, Fowlkes AL, Goss CH (2011) Monitoring influenza activity in the United States: a comparison of traditional surveillance systems with Google flu trends. PLoS One 6(4):e18687

    Article  Google Scholar 

  15. Corley CD, Cook DJ, Mikler AR, Singh KP (2010) Text and structural data mining of influenza mentions in web and social media. Int J Environ Res Public Health 7(2):596–615

    Article  Google Scholar 

  16. McCarthy FX (2010) FEMA’s disaster declaration process: a primer. DIANE Publishing, Collingdale

  17. Abrahams J (2010) Disaster management in Australia: the national emergency management system. Emerg Med 13(2):165–173

    Article  Google Scholar 

  18. Iakovou E, Douligeris C (2001) An information management system for the emergency management of hurricane disasters. Int J Risk Assess Manag 2(3):243–262(220)

    Article  Google Scholar 

  19. Rodrigues AS, Santos MA, Santos AD, Rocha F (2002) Dam-break flood emergency management system. Water Resour Manag 16(6):489–503

    Article  Google Scholar 

  20. Yang C, Yu M, Hu F, Jiang Y, Li Y (2017) Utilizing Cloud Computing to address big geospatial data challenges. Comput Environ Urban Syst 61:120–128

  21. Kun Y, Quan-Li X, Shuang-Yun P, Yan-Bo C (2006) The design and implementation of urban earthquake disaster loss evaluation and emergency response decision support systems based on ArcGIS. In:IEEE International Conference on Geoscience and Remote Sensing Symposium, 2006. IGARSS 2006, pp. 892–895

  22. Li YY, Shang XQ, Liu RF (2012) GIS-based emergency management system for chemical Industry Park. Adv Mater Res 550(553):2941–2944

    Article  Google Scholar 

  23. Rashed T, Weeks J (2003) Assessing vulnerability to earthquake hazards through spatial multicriteria analysis of urban areas. Int J Geogr Inf Sci 17(6):547–576

    Article  Google Scholar 

  24. Shuai XH, Cheng XP, Jiang LX (2001) Earthquake emergency response information system based on ArcView. Earthquake 21(4):94–99

  25. Tanasescu V, Gugliotta A, Domingue J, Davies R, Gutiérrez-Villarías L, Rowlatt M, Stincic S (2006) A semantic web services GIS based emergency management application. In: International Semantic Web Conference, pp. 959–966

  26. Tzemos S, Burnett RA (1995) Use of GIS in the federal emergency management information system (FEMIS) (No. PNL-SA--26086; CONF-9505242--1). Pacific Northwest Lab., Richland

  27. Zhigang L (2010) Liangtian, Wunian Y: research of GIS-based urban disaster emergency management information system. Comput Commun Technol Agric Eng Int Confe 2:484–487

    Google Scholar 

  28. Bailey MJ, Dynarski SM (2011) Gains and gaps: changing inequality in US college entry and completion (No. w17633). National Bureau of Economic Research, Washington DC

  29. Manole A, Fratta P, Houlden H (2014) Recent advances in bulbar syndromes: genetic causes and disease mechanisms. Curr Opin Neurol 27(5):506–514

    Article  Google Scholar 

  30. Hong-zhi P, Ling-bin Y, Yong-shun H (2007) Design and development of emergency and precaution management of public health system based on GIS [J]. Sci Surv Mapp 3:045

    Google Scholar 

  31. Nelson EK, Piehler B, Eckels J, Rauch A, Bellew M, Hussey P, Ramsay S, Nathe C, Lum K, Krouse K (2011) LabKey server: an open source platform for scientific data integration, analysis and collaboration. BMC Bioinf 12(1):71

    Article  Google Scholar 

  32. Meng S, Xu G, Wu X, Lei Y, Yan J, Nadin-Davis SA, Liu H, Wu J, Wang D, Dong G et al (2010) Transmission dynamics of rabies in China over the last 40 years: 1969–2009. J Clin Virol 49(1):47–52

    Article  Google Scholar 

  33. Gong W, Jiang Y, Za Y, Zeng Z, Shao M, Fan J, Sun Y, Xiong Z, Yu X, Tu C (2010) Temporal and spatial dynamics of rabies viruses in China and Southeast Asia. Virus Res 150(1–2):111–118

    Article  Google Scholar 

  34. Yu J, Li H, Tang Q, Rayner S, Han N, Guo Z, Liu H, Adams J, Fang W, Tao X et al (2012) The spatial and temporal dynamics of rabies in china. PLoS Negl Trop Dis 6(5):e1640–e1610

    Article  Google Scholar 

  35. Yin C, Zhou H, Wu H, Tao X, Rayner S, Wang S, Tang Q, Liang G (2012) Analysis on factors related to rabies epidemic in China from 2007-2011. Virol Sin 27(2):132–143

    Article  Google Scholar 

  36. Zhang J, Jin Z, Sun GQ, Sun XD, Ruan SG (2012) Modeling seasonal rabies epidemics in China. Bull Math Biol 74(5):1226–1251

    Article  Google Scholar 

  37. Zhang J, Jin Z, Sun G, Zhou T, Ruan S (2011) Analysis of rabies in China: transmission dynamics and control. PLoS One 6(7):e20891–e20899

    Article  Google Scholar 

  38. Song M, Tang Q, Wang D-M, Mo Z-J, Guo S-H, Li H, Tao X-Y, Rupprecht C, Feng Z-J, Liang G-D (2009) Epidemiological investigations of human rabies in China. BMC Infect Dis 9(1):210–218

    Article  Google Scholar 

  39. Yin W, Dong J, Tu C, Edwards J, Guo F, Zhou H, Yu H, Vong S, Rabies T, Advisory B (2013) Challenges and needs for China to eliminate rabies. Infect Dis Poverty 2(1):23

    Article  Google Scholar 

  40. Guo D, Zhou H, Zou Y, Yin W, Yu H, Si Y, Li J, Zhou Y, Zhou X, Magalhães RJS (2013) Geographical analysis of the distribution and spread of human rabies in China from 2005 to 2011. PLoS One 8(8):e72352

    Article  Google Scholar 

  41. Smith DL, Lucey B, Waller LA, Childs JE, Real LA (2002) Predicting the spatial dynamics of rabies epidemics on heterogeneous landscapes. Proc Natl Acad Sci U S A 99(6):3668–3672

    Article  Google Scholar 

  42. Lucey BT, Russell CA, Smith D, Wilson ML, Long A, Waller LA, Childs JE, Real LA (2002) Spatiotemporal analysis of epizootic raccoon rabies propagation in Connecticut, 1991-1995. Vector Borne Zoonotic Dis (Larchmont, NY) 2(2):77–86

    Article  Google Scholar 

  43. Guerra MA, Curns AT, Rupprecht CE, Hanlon CA, Krebs JW, Childs JE (2003) Skunk and raccoon rabies in the eastern United States: temporal and spatial analysis. Emerg Infect Dis 9(9):1143–1150

    Article  Google Scholar 

  44. Wilde H, Khawplod P, Khamoltham T, Hemachudha T, Tepsumethanon V, Lumlerdacha B, Mitmoonpitak C, Sitprija V (2005) Rabies control in south and Southeast Asia. Vaccine 23(17–18):2284–2289

    Article  Google Scholar 

  45. Cliquet F, Picard-Meyer E (2004) Rabies and rabies-related viruses: a modern perspective on an ancient disease. Rev Sci Tech 23(2):625–642

    Article  Google Scholar 

  46. Recuenco S, Blanton JD, Rupprecht CE (2012) A spatial model to forecast raccoon rabies emergence. Vector Borne Zoonotic Dis 12(2):126–137

    Article  Google Scholar 

  47. Li X, Feng P, Du Y, Bian G, Yu X (2010) Socioeconomic status is a critical risk factor for human rabies post-exposure prophylaxis. Vaccine 28(42):6847–6851

    Article  Google Scholar 

  48. Haupt W (1999) Rabies--risk of exposure and current trends in prevention of human cases. Vaccine 17(13–14):1742–1749

    Article  Google Scholar 

  49. Fang LX, Ping F, Ping DY, Hui BG, Yan YX (2010) Socioeconomic status is a critical risk factor for human rabies post-exposure prophylaxis. Vaccine 28(42):6847–6851

    Article  Google Scholar 

  50. Gautret P, Shaw M, Gazin P, Soula G, Delmont J, Parola P, Soavi MJ, Brouqui P, Matchett DE, Torresi J (2008) Rabies Postexposure prophylaxis in returned injured travelers from France, Australia, and New Zealand: a retrospective study. J Travel Med 15(1):25–30

    Article  Google Scholar 

  51. Si H, Guo Z-M, Hao Y-T, Liu Y-G, Zhang D-M, Rao S-Q, Lu J-H (2008) Rabies trend in China (1990-2007) and post-exposure prophylaxis in the Guangdong province. BMC Infect Dis 8

  52. Suzuki K, Pereira JAC, López R, Morales G, Rojas L, Mutinelli LE, Pons ER (2007) Descriptive spatial and spatio-temporal analysis of the 2000–2005 canine rabies endemic in Santa Cruz de la sierra, Bolivia. Acta Trop 103(3):157–162

    Article  Google Scholar 

  53. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649

    Article  Google Scholar 

  54. Guo D, Wu K, Zhang Z, Xiang W (2012) WMS-based flow mapping services. In: 2012 IEEE Eighth World Congress on Services (SERVICES) IEEE Honolulu, pp. 234–241

  55. Guo D, Li J, Cao H, Zhou Y (2014) A collaborative large spatio-temporal data visual analytics architecture for emergence response. IOP Conference Series: Earth and Environmental Science 18(1):012129. https://doi.org/10.1088/1755-1315/18/1/012129

  56. Yang C, Goodchild M (2011) Using spatial principles to optimize distributed computing for enabling the physical science discoveries. Proc Natl Acad Sci U S A 108(14):5498–5503

    Article  Google Scholar 

  57. Gray J, Chaudhuri S, Bosworth A, Layman A, Reichart D, Venkatrao M, Pellow F, Pirahesh H (1997) Data cube: a relational aggregation operator generalizing group-by, cross-tab, and sub-totals. Data Min Knowl Disc 1(1):29–53

    Article  Google Scholar 

  58. Chomel B (1993) The modern epidemiological aspects of rabies in the world. Comp Immunol Microbiol Infect Dis 16(1):11–20

    Article  Google Scholar 

  59. Zhang Y, Xiong C, Xiao D, Jiang R, Wang Z, Zhang L, Fu Z (2005) Human rabies in China. Emerg Infect Dis 11(12):1983–1984

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danhuai Guo.

Ethics declarations

Fundings

This work is partly supported by Natural Science Foundation of China under Grant No.41371386 and Beijing Natural Science Foundation under Grant No. 9172023. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, D., Zhu, Y. & Yin, W. OSCAR: a framework to integrate spatial computing ability and data aggregation for emergency management of public health. Geoinformatica 22, 383–410 (2018). https://doi.org/10.1007/s10707-017-0308-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-017-0308-z

Keywords

Navigation