Skip to main content

Efficient task assignment in spatial crowdsourcing with worker and task privacy protection


Spatial crowdsourcing (SC) outsources tasks to a set of workers who are required to physically move to specified locations and accomplish tasks. Recently, it is emerging as a promising tool for emergency management, as it enables efficient and cost-effective collection of critical information in emergency such as earthquakes, when search and rescue survivors in potential ares are required. However in current SC systems, task locations and worker locations are all exposed in public without any privacy protection. SC systems if attacked thus have penitential risk of privacy leakage. In this paper, we propose a protocol for protecting the privacy for both workers and task requesters while maintaining the functionality of SC systems. The proposed protocol is built on partially homomorphic encryption schemes, and can efficiently realize complex operations required during task assignment over encrypted data through a well-designed computation strategy. We prove that the proposed protocol is privacy-preserving against semi-honest adversaries. Simulation on two real-world datasets shows that the proposed protocol is more effective than existing solutions and can achieve mutual privacy-preserving with acceptable computation and communication cost.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

  2. 2.

  3. 3.

  4. 4.


  1. 1.

    Castelluccia C, Chan AC, Mykletun E, Tsudik G (2009) Efficient and provably secure aggregation of encrypted data in wireless sensor networks. ACM Transactions on Sensor Networks (TOSN) 5(3):20

    Article  Google Scholar 

  2. 2.

    Chen L, Shahabi C (2016) Spatial crowdsourcing: challenges and opportunities. IEEE Data Eng Bull 39(4):14–25

    Google Scholar 

  3. 3.

    Cheng P, Lian X, Chen Z, Fu R, Chen L, Han J, Zhao J (2015) Reliable diversity-based spatial crowdsourcing by moving workers. Proc VLDB Endowment 8(10):1022–1033

    Article  Google Scholar 

  4. 4.

    Cheng P, Lian X, Chen L, Han J, Zhao J (2016) Task assignment on multi-skill oriented spatial crowdsourcing. IEEE Trans Knowl Data Eng 28(8):2201–2215

    Article  Google Scholar 

  5. 5.

    Cooper S, Khatib F, Treuille A, Barbero J, Lee J, Beenen M, Leaver-Fay A, Baker D, Popović Z (2010) Predicting protein structures with a multiplayer online game. Nature 466(7307):756–760

    Article  Google Scholar 

  6. 6.

    Dai W (2010) Commutative-like encryption: a new characterization of ElGamal. arXiv:1011.3718

  7. 7.

    Deng D, Shahabi C, Demiryurek U, Zhu L (2016) Task selection in spatial crowd- sourcing from workers perspective. GeoInformatica 20(3):529–568

    Article  Google Scholar 

  8. 8.


  9. 9.

    Dwork C (2008) Differential privacy: a survey of results. TAMC, pp 1–19

  10. 10.

    ELGAMAL T (1985) A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans Inf Theory 31(4):469–472

    Article  Google Scholar 

  11. 11.

    Elmehdwi Y, Samanthula BK, Jiang W (2014) Secure k-nearest neighbor query over encrypted data in outsourced environments. ICDE, pp 664–675

  12. 12.

    Feng Y, Wang J, Zhang Z, Zhong H, Ming Z, Yang X, Mao R (2016) The edge weight computation with mapreduce for extracting weighted graphs. IEEE Trans Parallel Distrib Syst 27(12):3659–3672

    Article  Google Scholar 

  13. 13.


  14. 14.

    Gentry C (2009) Fully homomorphic encryption using ideal lattices. STOC, pp 169–169

  15. 15.

    Gentry C, Halevi S (2011) Implementing Gentry’s fully-homomorphic encryption scheme. EUROCRYPT, pp 129–148

  16. 16.

    Ghinita G, Kalnis P, Khoshgozaran A, Shahabi C, Tan KL (2008) Private queries in location based services: anonymizers are not necessary. SIGMOD, pp 121–132

  17. 17.

    Goldreich O (2004) Foundations of cryptography: volume 2, basic applications. Cambridge University Press

  18. 18.

    Hardy GH, Littlewood JE (1916) Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes. Acta Mathematica 41(1):119–196

    Article  Google Scholar 

  19. 19.

    Howe J (2006) Crowdsourcing: a definition

  20. 20.

    Kazemi L, Shahabi C (2012) Geocrowd: enabling query answering with spatial crowdsourcing. SIGSPATIAL, pp 189–198

  21. 21.

    Liu A, Li Q, Huang L, Xiao M (2010) FACTS: a framework for fault-tolerant composition of transactional web services. IEEE Trans Serv Comput 3(1):46–59

    Article  Google Scholar 

  22. 22.

    Liu A, Li Q, Huang L, Ying S, Xiao M (2013) Coalitional game for community-based autonomous web services cooperation. IEEE Trans Services Computing 6(3):387–399

    Article  Google Scholar 

  23. 23.

    Liu A, Zheng K, Li L, Liu G, Zhao L, Zhou X (2015) Efficient secure similarity computation on encrypted trajectory data. ICDE, pp 66–77

  24. 24.

    Liu S, Liu A, Zhao L, Liu G, Li Z, Zhao P, Zheng K, Qin L (2016) Efficient query processing with mutual privacy protection for location-based services. DASFAA, pp 299–313

  25. 25.

    Mao R, Xu H, Wu W, Li J, Li Y, Lu M (2015) Overcoming the challenge of variety: big data abstraction, the next evolution of data management for AAL communication systems. IEEE Commun Mag 53(1):42–47

    Article  Google Scholar 

  26. 26.

    Mao R, Zhang P, Li X, Liu X, Lu M (2016) Pivot selection for metric-space indexing. Int J Mach Learn Cybern 7(2):311–323

    Article  Google Scholar 

  27. 27.

    Paillier P (1999) Public-Key cryptosystems based on composite degree residuosity classes. EUROCRYPT, pp 223–238

  28. 28.

    Paulet R, Kaosar MG, Yi X, Bertino E (2012) Privacy-Preserving and Content-Protecting Location Based Queries. ICDE, pp 44–53

  29. 29.

    Paulet R, Kaosar MG, Yi X, Bertino E (2014) Privacy-preserving and content-protecting location based queries. IEEE Trans Knowl Data Eng 26(5):1200–1210

    Article  Google Scholar 

  30. 30.

    Shang S, Yuan B, Deng K, Xie K, Zheng K, Zhou X (2012) PNN query processing on compressed trajectories. GeoInformatica 16(3):467–496

    Article  Google Scholar 

  31. 31.

    Shang S, Ding R, Yuan B, Xie K, Zheng K, Kalnis P (2012) User oriented trajectory search for trip recommendation. EDBT, pp 156–167

  32. 32.

    Shang S, Ding R, Zheng K, Jensen CS, Kalnis P, Zhou X (2014) Personalized trajectory matching in spatial networks. VLDB J 23(3):449–468

    Article  Google Scholar 

  33. 33.

    Shang S, Liu J, Zheng K, Lu H, Pedersen TB, Wen JR (2015) Planning unobstructed paths in traffic-aware spatial networks. GeoInformatica 19(4):723–746

    Article  Google Scholar 

  34. 34.

    Shang S, Zheng K, Jensen CS, Yang B, Kalnis P, Li G, Wen JR (2015) Discovery of path nearby clusters in spatial networks. IEEE Trans Knowl Data Eng 27(6):1505–1518

    Article  Google Scholar 

  35. 35.

    Shang S, Chen L, Wei Z, Jensen CS, Wen JR, Kalnis P (2016) Collective travel planning in spatial networks. IEEE Trans Knowl Data Eng 28(5):1132–1146

    Article  Google Scholar 

  36. 36.

    Shove E, Trentmann F, Wilk R (2009) Time, consumption and everyday life: practice, materiality and culture. Berg

  37. 37.

    To H., Ghinita G., Shahabi C. (2014) A framework for protecting worker location privacy in spatial crowdsourcing. PVLDB 7(10):919–930

    Google Scholar 

  38. 38.

    To H, Ghinita G, Shahabi C (2015) Privgeocrowd: a toolbox for studying private spatial crowdsourcing. ICDE, pp 1404–1407

  39. 39.

    To H., Shahabi C., Kazemi L. (2015) A server-assigned spatial crowdsourcing framework. ACM Transactions on Spatial Algorithms and Systems 1(1):2

    Article  Google Scholar 

  40. 40.

    Tong Y, She J, Ding B, Wang L, Chen L (2016) Online mobile micro-task allocation in spatial crowdsourcing. ICDE, pp 49–60

  41. 41.

    Von Ahn L, Maurer B, McMillen C, Abraham D, Blum M (2008) Recaptcha: Human-based character recognition via web security measures. Science 321(5895):1465–1468

    Article  Google Scholar 

  42. 42.


  43. 43.

    Yao B., Li F., Xiao X. (2013) Secure nearest neighbor revisited. ICDE, pp 733–744

  44. 44.

    Yi X, Paulet R, Bertino E, Varadharajan V (2014) Practical k nearest neighbor queries with location privacy. ICDE, pp 640–651

  45. 45.

    Yi X, Paulet R, Bertino E, Varadharajan V (2016) Practical approximate k nearest neighbor queries with location and query privacy. IEEE Trans Knowl Data Eng 28(6):1546–1559

    Article  Google Scholar 

  46. 46.

    Yiu ML, Ghinita G, Jensen CS, Kalnis P (2010) Enabling search services on outsourced private spatial data. VLDB J 19(3):363–384

    Article  Google Scholar 

  47. 47.

    Zhang D, Lu K, Mao R, Feng Y, Liu Y, Ming Z, Ni LM (2014) Fine-grained localization for multiple transceiver-free objects by using RF-based technologies. IEEE Trans Parallel Distrib Syst 25(6):1464–1475

    Article  Google Scholar 

  48. 48.

    Zheng L, Chen L (2016) Mutual benefit aware task assignment in a bipartite labor market. ICDE, pp 73–84

Download references


Research reported in this publication was partially supported by KAUST and Natural Science Foundation of China (Grant Nos. 61572336, 61572335, 61632016, 61402313, 61472337), and has been benefited from discussions with Dr. Ke Sun in MINE lab at KAUST.

Author information



Corresponding author

Correspondence to Shuo Shang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, A., Wang, W., Shang, S. et al. Efficient task assignment in spatial crowdsourcing with worker and task privacy protection. Geoinformatica 22, 335–362 (2018).

Download citation


  • Spatial crowdsourcing
  • Spatial task assignment
  • Location privacy
  • Mutual privacy protection