, Volume 21, Issue 2, pp 237–261 | Cite as

Design principles of a stream-based framework for mobility analysis

  • Loic SalmonEmail author
  • Cyril Ray


Trajectory analysis is of crucial importance in several fields as social analysis, zoology, climatology or traffic monitoring. Over the last decade, the number of mobile systems and devices recording their positions has grown significantly generating a deluge of spatial and temporal data to analyze. This increasing volume of data raises numerous issues in terms of storage, processing and extraction of information. Previous works considering movement analysis have been mainly oriented towards either archived data processing and mining or continuous handling of incoming streams. The research developed in this pa- per introduces the design principles of a holistic approach combining real-time processing and archived data analysis to process mobility data “on the fly”. This solution aims to provide better results comparing to both purely offline and online approaches. This research considers distributed data and processing to be more efficient. The design principles are applied to maritime traffic analysis and a few representative examples are introduced to demonstrate the relevance of our approach.


Moving object database Geostreaming Maritime monitoring 


  1. 1.
    Pallotta G, Vespe M, Bryan K (2013) Vessel pattern knowledge discovery from AIS data: a framework for anomaly detection and route prediction. Entropy 15(6):2218–2245CrossRefGoogle Scholar
  2. 2.
    Giannotti F, Nanni M, Pedreschi D, Pinelli F, Renso C, Rinzivillo S, Trasarti R (2011) Unveiling the complexity of human mobility by querying and mining massive trajectory data. VLDB J 20(5):695–719CrossRefGoogle Scholar
  3. 3.
    Shekhar S, Gunturi V, Evans MR et al. (2012) Spatial big-data challenges intersect- ing mobility and cloud computing. Proc Eleventh ACM Int Workshop Data Eng Wireless Mobile Access, MobiDE ’12, 1–6, New York, NY, USA. ACMGoogle Scholar
  4. 4.
    Anselin L (1989) What is special about spatial data? alternative perspectives on spatial data analysis 63–77Google Scholar
  5. 5.
    Vatsavai RR, Ganguly A, Chandola V et al. (2012) Spatiotemporal data mining in the era of big spatial data: algorithms and applications. Proc 1st ACM SIGSPATIAL Int Workshop Anal Big Geospatial Data, BigSpatial ’12, 1-10, New York, NY, USA. ACMGoogle Scholar
  6. 6.
    Nguyen-Dinh L-V, Aref WG, Mokbel MF (2010) Spatio-temporal access methods: part 2 (2003 - 2010). IEEE Data Eng Bull 33(2):46–55Google Scholar
  7. 7.
    Patroumpas K (2013) Multi-scale window specification over streaming trajectories. J Spatial Inform Sci 7(1):45–75Google Scholar
  8. 8.
    Dean J, Ghemawat S (2004) Mapreduce: simplified data processing on large clusters. Proceedings of the 6th Conference on Symposium on Opearting Systems Design & Implementation - volume 6, OSDI’04. USENIX Association, Berkeley, p 10Google Scholar
  9. 9.
    Eldawy A, Mokbel MF (2015) The era of big spatial data. 31st IEEE Int Conf Data Eng Workshops, ICDE Workshops 2015, Seoul, South Korea 42–49Google Scholar
  10. 10.
    Aji A, Wang F, Vo H, Lee R, Liu Q, Zhang X, Saltz J (2013) Hadoop gis: a high performance spatial data warehousing system over mapreduce. Proc VLDB Endow 6(11):1009–1020CrossRefGoogle Scholar
  11. 11.
    Lu J, G¨ uting RH (2013) Parallel SECONDO: practical and efficient mobility data processing in the cloud. Proc 2013 I.E. Int Conf Big Data, 6-9 October 2013, Santa Clara, CA, USA, 17–25Google Scholar
  12. 12.
    Pelekis N, Theodoridis Y, Vosinakis S et al. (2006) Hermes - a framework for location-based data management. In Proc EDBT 1130–1134Google Scholar
  13. 13.
    Mokbel MF, Xiong X, Hammad MA et al. (2005) Continuous query processing of spatio-temporal data streams in place. Geoinformatica 343–365Google Scholar
  14. 14.
    Forlizzi L, G¨ uting RH, Nardelli E et al. (2000) A data model and data structures for moving objects databases. Proc 2000 ACM SIGMOD Int Conf Manag Data, SIGMOD ’00, 319–330, New York, NY, USA. ACMGoogle Scholar
  15. 15.
    de Almeida VT, Guting RH, Behr T et al. (2006) Querying moving objects in secondo. Proc 7th Int Conf Mobile Data Manag, MDM ’06, pages 47–52. IEEE Computer SocietyGoogle Scholar
  16. 16.
    Giannotti F, Nanni M, Pinelli F et al. (2007) Trajectory pattern mining. Proc 13th ACM SIGKDD Int Conf Knowledge Discov Data Mining, KDD ’07, 330–339. ACMGoogle Scholar
  17. 17.
    Ma Q, Yang B, Qian W et al. (2009) Query processing of massive trajectory data based on mapreduce. Proc First Int CIKM Workshop Cloud Data Manag, CloudDb 2009, Hong Kong, China, November 2, 2009, 9–16Google Scholar
  18. 18.
    Golab L, Ozsu MT (2003) Issues in data stream management. SIGMOD Rec., 5–14Google Scholar
  19. 19.
    Yu Z, Liu Y, Yu X, Pu KQ (2015) Scalable distributed processing of K nearest neighbor queries over moving objects. IEEE Trans Knowl Data Eng 27(5):1383–1396CrossRefGoogle Scholar
  20. 20.
    Chandrasekaran S, Franklin M (2004) Remembrance of streams past: overload-sensitive management of archived streams. Proc Thirtieth Int Conf Very Large Data Bases, VLDB ’04, 348–359Google Scholar
  21. 21.
    Dindar N, Lau BGP, Zal A et al. (2009) Dejavu: declarative pattern matching over live and archived streams of events. In Etintemel U, Zdonik SB, Kossmann D, Tatbul N, editors, SIGMOD Conference, pages 1023-1026. ACMGoogle Scholar
  22. 22.
    Marz N (2013) Big data : principles and best practices of scalable realtime data systems. O’Reilly Media, [S.l.]Google Scholar
  23. 23.
    Golab L, Johnson T (2014) Data stream warehousing. IEEE 30th Int Conf Data Eng, Chicago, ICDE 2014, IL, USA 1290–1293Google Scholar
  24. 24.
    Condie T, Conway N, Alvaro P et al. (2010) Mapre- duce online. Proc 7th USENIX Conf Networked Syst Design Implement, NSDI'10, 21, Berkeley, CA, USA, 2010. USENIX AssociationGoogle Scholar
  25. 25.
    Lam W, Liu L, Prasad S, Rajaraman A, Vacheri Z, Doan A (2012) Muppet: Mapreduce-style processing of fast data. Proc VLDB Endow 5(12):1814–1825CrossRefGoogle Scholar
  26. 26.
    Olston C, Chiou G, Chitnis L et al. (2011) Nova: continuous pig/hadoop workflows. In Proc 2011 ACM SIGMOD Int Conf Manag Data, SIGMOD ’11, pages 1081-1090, New York, NY, USA. ACMGoogle Scholar
  27. 27.
    Zaharia M, Chowdhury M, Franklin MJ et al. (2010) Spark: cluster computing with working sets. 2nd USENIX Workshop Hot Topics Cloud Comput, HotCloud’10, Boston, MA, USAGoogle Scholar
  28. 28.
    Zaharia M, Chowdhury M, Das T et al. (2012) Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing. Proc 9th USENIX Conf Networked Syst Design Implement, NSDI’12, 2-2, Berkeley, CA, USA. USENIX AssociationGoogle Scholar
  29. 29.
    Arasu A, Babcock B, Babu S et al (2004) Stream: the Stanford data stream management system. Technical Report 2004-20, Stanford InfoLabGoogle Scholar
  30. 30.
    Zaharia M, Das T, Li H et al. (2013) Discretized streams: fault-tolerant streaming computation at scale. Proc Twenty-Fourth ACM Symp Oper Syst Principles, SOSP ’13, 423–438, New York, NY, USA. ACMGoogle Scholar
  31. 31.
    Boykin PO, Ritchie S, O’Connell I, Lin J (2014) Summingbird: a framework for integrating batch and online mapreduce computations. PVLDB 7(13):1441–1451Google Scholar
  32. 32.
    Alexandrov A, Bergmann R, Ewen S, Freytag J, Hueske F, Heise A, Kao O, Leich M, Leser U, Markl V, Naumann F, Peters M, Rheinl¨ ander A, Sax MJ, Schelter S, Hoger M, Tzoumas K, Warneke D (2014) The stratosphere platform for big data ana- lytics. VLDB J 23(6):939–964CrossRefGoogle Scholar
  33. 33.
    Ewen S, Schelter S, Tzoumas S et al. (2013) Iterative parallel data processing with stratosphere: an inside look. Proc ACM SIGMOD Int Conf Manag Data, SIGMOD 2013, New York, NY, USA 1053–1056Google Scholar
  34. 34.
    Ewen S, Tzoumas K, Kaufmann M et al. (2012) Spinning fast iterative data flows. CoRR, abs/1208.0088Google Scholar
  35. 35.
    Hueske F, Peters M, Sax M et al. (2012) Opening the black boxes in data flow optimization. CoRR, abs/1208.0087Google Scholar
  36. 36.
    Hueske F, Krettek A, Tzoumas K et al. (2013) Enabling operator reordering in data flow programs through static code analysis. CoRR, abs/1301.4200Google Scholar
  37. 37.
    Technical characteristics for an automatic identification system using time division multiple access in the VHF maritime mobile frequency band. Recommendation ITU-R M.1371-5 (02/2014), 2014Google Scholar
  38. 38.
    Vodas M, Pelekis N, Theodoridis Y, Ray C, Karkaletsis V, Petridis S, Miliou A (2013) Efficient ais data processing for environmentally safe shipping. SPOUDAI J Econ Bus 63(3-4):181–190Google Scholar
  39. 39.
    Ghanem TM, Elmagarmid AK, Larson P et al. (2010) Supporting views in data stream management systems. ACM Trans. Database Syst 35(1)Google Scholar
  40. 40.
    Deshpande A, Ives Z, Raman V (2007) Adaptive query processing. Found Trends Databases 1(1):1–140CrossRefGoogle Scholar
  41. 41.
    Sakr MA, G¨ uting RH (2014) Group spatiotemporal pattern queries. GeoInformatica 18(4):699–746CrossRefGoogle Scholar
  42. 42.
    Abadi DJ, Carney D, Cetintemel U et al (2003) Aurora: a data stream management system. Proc 2003 ACM SIGMOD Int Conf Manag Data, San Diego, California, USA 666Google Scholar
  43. 43.
    Shah MA, Hellerstein JM, Brewer EA et al. (2004) Highly-available, fault-tolerant, parallel dataflows. Proc ACM SIGMOD Int Conf Manag Data, Paris, France 827–838Google Scholar
  44. 44.
    Sun X, Yaagoub A, Trajcevski G et al. (2013) P2est: parallelization philosophies for evaluating spatio-temporal queries. Proc 2nd ACM SIGSPATIAL Int Workshop Anal Big Geospatial Data, BigSpatial@SIGSPATIAL 2013, Orlando, FL, USA 47–54Google Scholar
  45. 45.
    Patroumpas K, Sellis TK (2004) Managing trajectories of moving objects as data streams. Spatio-Temporal Database Manag, 2nd Int Workshop STDBM’04, Toronto, Canada 41–48Google Scholar
  46. 46.
    Potamias M, Patroumpas K, Sellis TK et al. (2006) Sampling trajectory streams with spatiotemporal criteria. 18th Int Conf Scientific Statistical Database Manag, SSDBM 2006, Vienna, Austria, Proceedings 275–284Google Scholar
  47. 47.
    Patroumpas K (2013) Multi-scale window specification over streaming trajectories. J Spatial Inform Sci 45–75Google Scholar
  48. 48.
    Potamias M, Patroumpas K, Sellis TK et al. (2007) Online amnesic summarization of stream- ing locations. Adv Spatial Temp Databases, 10th Int Symp, SSTD 2007, Boston, MA, USA, Proceedings, 148–166Google Scholar
  49. 49.
    Li Z (2014) Spatiotemporal pattern mining: algorithms and applications. Frequent Pattern Mining 283–306Google Scholar
  50. 50.
    Chandrasekaran S, Franklin MJ (2003) Psoup: a system for streaming queries over streaming data. VLDB J 12(2):140–156CrossRefGoogle Scholar
  51. 51.
    Mokbel MF, Xiong X, Aref W et al. (2004) SINA: scalable incremental processing of continuous queries in spatio-temporal databases. Proc ACM SIGMOD Int Conf Manag Data, Paris, France 623–634Google Scholar
  52. 52.
    Ghanem TM, Aref WG, Elmagarmid AK (2006) Exploiting predicate-window semantics over data streams. SIGMOD Record 35(1):3–8CrossRefGoogle Scholar
  53. 53.
    Xiong X, Elmongui HG, Chai X et al. (2007) Place: A distributed spatio- temporal data stream management system for moving objects. 8th Int Conf Mobile Data Manag (MDM 2007), Mannheim, Germany 44–51Google Scholar
  54. 54.
    Mokbel MF, Aref WG (2008) SOLE: scalable on-line execution of continuous queries on spatio-temporal data streams. VLDB J 17(5):971–995CrossRefGoogle Scholar
  55. 55.
    Nehme RV, Rundensteiner EA (2006) SCUBA: scalable cluster-based algorithm for evaluating continuous spatio-temporal queries on moving objects. Adv Database Technol - EDBT 2006, 10th Int Conf Extend Database Technol, Munich, Germany, March 26-31, 2006, Proceedings, 1001–1019Google Scholar
  56. 56.
    Zhang C, Huang Y, Grifn T et al. (2009) Querying geospatial data streams in SECONDO. 17th ACM SIGSPATIAL Int Symp Adv Geographic Inform Syst, ACM-GIS 2009, Seattle, Washington, USA, Proceedings 544–545Google Scholar
  57. 57.
    Galic Z, Baranovic M, Krizanovic K, Meskovic E (2014) Geospatial data streams: formal framework and implementation. Data Knowl Eng 91:1–16CrossRefGoogle Scholar
  58. 58.
    Kazemitabar SJ, Demiryurek U, Ali MH, Akdogan A, Shahabi C (2010) Geospatial stream query processing using microsoft SQL server streaminsight. PVLDB 3(2):1537–1540Google Scholar
  59. 59.
    Ali MH, Gerea C, Raman BS, Sezgin B, Tarnavski T, Verona T, Wang P, Zab- back P, Kirilov A, Ananthanarayan A, Lu M, Raizman A, Krishnan R, Schindlauer R, Grabs T, Bjeletich S, Chandramouli B, Goldstein J, Bhat S, Li Y, Nicola VD, Wang X, Maier D, Santos I, Nano O, Grell S (2009) Microsoft CEP server and online behavioral targeting. PVLDB 2(2):1558–1561Google Scholar
  60. 60.
    Biem A, Bouillet E, Feng H et al. (2010) IBM infosphere streams for scalable, real-time, intelligent transportation services. Proc ACM SIGMOD Int Conf Manag Data, SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10, 2010, pages 1093–1104Google Scholar
  61. 61.
    Wolf JL, Bansal N, Hildrum K et al. (2008) SODA: an optimizing scheduler for large-scale stream-based distributed computer systems. Middleware 2008, ACM/IFIP/USENIX 9th Int Middleware Conf, Leuven, Belgium, Proceedings 306–325Google Scholar
  62. 62.
    Khandekar R, Hildrum K, Parekh S et al. (2009) COLA: optimizing stream processing applications via graph partitioning. Middleware 2009, ACM/IFIP/USENIX, 10th Int Middleware Conf, Urbana, IL, USA, November 30 - December 4, 2009. Proceedings, 308–327Google Scholar
  63. 63.
    Neumeyer L, Robbins B, Nair A et al. (2010) S4: distributed stream computing platform. Proc 2010 I.E. Int Conf Data Mining Workshops, ICDMW ’10, pages 170-177. IEEE Computer SocietyGoogle Scholar
  64. 64.
    Garz A, Benczr AA, Sidl CI et al. (2013) Real-time streaming mobility analytics. In Hu X, Lin TY, Raghavan V, Wah BW, Baeza- Yates RA, Fox G, Shahabi C, Smith M, Q. Y. 0001, Ghani R, Fan W, Lempel R, Nambiar R, editors, BigData Conference, 697–702. IEEEGoogle Scholar
  65. 65.
    Xiong X, Mokbel MF, Aref WG et al. (2005) SEA-CNN: scalable processing of continuous k-nearest neighbor queries in spatio-temporal databases. Proc 21st Int Conf Data Eng, ICDE 2005, Tokyo, Japan 643–654Google Scholar
  66. 66.
    Kalashnikov DV, Prabhakar S, Hambrusch SE et al. (2002) Efficient evaluation of continuous range queries on moving objects. Database Expert Syst Applic, 13th Int Conf, DEXA 2002, Aix-en-Provence, France, September 2-6, 2002, Proceedings, 731–740Google Scholar
  67. 67.
    Mokbel MF, Aref WG (2005) Gpac: generic and progressive processing of mobile queries over mobile data. Proc 6th Int Conf Mobile Data Manag, MDM ’05, 155–163, New York, NY, USA. ACMGoogle Scholar
  68. 68.
    Deng K, Xie K, Zheng K et al. (2011) Trajectory indexing and retrieval. Comput Spatial Traject 35–60Google Scholar
  69. 69.
    Patroumpas K, Artikis A, Katzouris N et al. (2015) Event recognition for maritime surveillance. Proc 18th Int Conf Extend Database Technol, EDBT 2015, Brussels, Belgium 629–640Google Scholar
  70. 70.
    Balazinska M, Kwon Y, Kuchta N et al. (2007) Moirae: history-enhanced monitoring. CIDR 2007, Third Biennial Conf Innov Data Syst Res, Asilomar, CA, USA, January 7-10, 2007, Online Proceedings, pages 375–386Google Scholar
  71. 71.
    Etienne L, Devogele T, Bouju A (2012) Spatio-temporal trajectory analysis of mobile objects following the same itinerary. Adv Geo-Spatial Inform Sci 10:47–57Google Scholar
  72. 72.
    Devogele T, Etienne L, Ray C et al. (2013) Maritime monitoring. Mobility Data: Model, Manag, Understand 221–239Google Scholar
  73. 73.
    Han J, Pei J, Yin Y et al. (2000) Mining frequent patterns without candidate generation. Proc 2000 ACM SIGMOD Int Conf Manag Data, May 16-18, 2000, Dallas, Texas, USA., 1–12Google Scholar
  74. 74.
    Morzy M (2007) Mining frequent trajectories of moving objects for location prediction. Mach Learn Data Mining Pattern Recognition, 5th Int Conf, MLDM 2007, Leipzig, Germany 2007, Proceedings, 667–680Google Scholar
  75. 75.
    Le Guyader D, Ray C, Brosset D et al. (2016) Defining fishing grounds variability with Automatic Identification System (AIS) data. 2nd Int Workshop Maritime Flows Networks (WIMAKS’16), Paris, 2527, 2 pagesGoogle Scholar
  76. 76.
    Hammad MA, Mokbel MF, Ali MH et al. (2004) Nile: a query processing engine for data streams. Proc 20th Int Conf Data Eng, ICDE 2004, 30 March - 2 April 2004, Boston, MA, USA, 851Google Scholar
  77. 77.
    Hammad MA, Franklin MJ, Aref WG et al. (2003) Scheduling for shared window joins over data streams. VLDB 297–308Google Scholar
  78. 78.
    Hammad MA, Aref WG, Elmagarmid AK (2008) Query processing of multi-way stream window joins. VLDB J 17(3):469–488CrossRefGoogle Scholar
  79. 79.
    Ghanem TM, Hammad MA, Mokbel MF, Aref WG, Elmagarmid AK (2007) In- cremental evaluation of sliding-window queries over data streams. IEEE Trans Knowl Data Eng 19(1):57–72CrossRefGoogle Scholar
  80. 80.
    Elmongui HG, Mokbel MF, Aref WG et al. (2005) Spatio-temporal histograms. Adv Spatial Temp Databases, 9th Int Symp, SSTD 2005, Angra dos Reis, Brazil, August 22-24, 2005, Proceedings, pages 19–36Google Scholar
  81. 81.
    Huang Y, Zhang C (2008) New data types and operations to support geo-streams. Geographic Inform Sci, 5th Int Conf, GIScience 2008, Park City, UT, USA, September 23-26, 2008. Proceedings, pages 106–118Google Scholar
  82. 82.
    Huang Y, Zhang C (2009) Interval-based nearest neighbor queries over sliding windows from trajectory data. MDM 2009, Tenth Int Conf Mobile Data Manag, Taipei, Taiwan, 18-20 May 2009, 212–221Google Scholar
  83. 83.
    Chandrasekaran S, Cooper O, Deshpande A et al. (2003) Telegraphcq: continuous dataflow processing. Proc 2003 ACM SIGMOD Int Conf Manag Data, San Diego, California, USA, June 9-12, 2003, page 668Google Scholar
  84. 84.
    Pelekis N, Frentzos E, Giatrakos N et al. (2008) Hermes: aggregative lbs via a trajectory db engine. Proc 2008 ACM SIGMOD Int Conf Manag Data, SIGMOD ’08, 1255–1258, New York, NY, USA. ACMGoogle Scholar
  85. 85.
    Avnur R, Hellerstein JM (2000) Eddies: continuously adaptive query processing. Proc 2000 ACM SIGMOD Int Conf Manag Data, May 16-18, 2000, Dallas, Texas, USA., 261–272Google Scholar
  86. 86.
    Urhan T, Franklin MJ (2001) Dynamic pipeline scheduling for improving interactive query performance. VLDB 2001, Proc 27th Int Conf Very Large Data Bases, Roma, Italy 501–510Google Scholar
  87. 87.
    Patroumpas K, Sellis TK (2011) Subsuming multiple sliding windows for shared stream computation. Adv Databases Inform Syst - 15th Int Conf, ADBIS 2011, Vienna, Austria. Proceedings, pages 56–69Google Scholar
  88. 88.
    Patroumpas K, Sellis TK (2010) Multi-granular time-based sliding windows over data streams. TIME 2010 - 17th Int Symp Temporal Represent Reason, Paris, France 146–153Google Scholar
  89. 89.
    Shah MA, Hellerstein JM, Chandrasekaran S et al. (2003) Flux: an adaptive partitioning operator for continuous query systems. Proc 19th Int Conf Data Eng, Bangalore, India 25–36Google Scholar
  90. 90.
    Rundensteiner EA, Ding L, Sutherland TM et al. (2004) CAPE: continuous query engine with heterogeneous-grained adaptivity. Proc Thirtieth Int Conf Very Large Data Bases, Toronto, Canada, 1353–1356Google Scholar
  91. 91.
    Zhu Y, Rundensteiner EA, Heineman GT et al. (2004) Dynamic plan migration for con- tinuous queries over data streams. Proc ACM SIGMOD Int Conf ManagData, Paris, France, 431–442Google Scholar
  92. 92.
    Sutherland TM, Zhu Y, Ding L et al. (2005) An adaptive multi- objective scheduling selection framework for continuous query processing. Ninth Int Database Eng Appl Symp (IDEAS 2005), Montreal, Canada 445–454Google Scholar
  93. 93.
    Nehme RV, Rundensteiner EA (2007) ClusterSheddy : load shedding using mov- ing clusters over spatio-temporal data streams. Adv Databases: Concepts, Syst Appl, 12th Int Conf Database Syst Adv Appl, DASFAA 2007, Bangkok, Thailand, April 9-12, 2007, Proceedings, 637–651Google Scholar
  94. 94.
    Sutherland TM, Liu B, Jbantova M et al. (2005) D-CAPE: distributed and self-tuned continuous query processing. Proc 2005 ACM CIKM Int Conf Inform Knowledge Manag, Bremen, Ger- many 217–218Google Scholar
  95. 95.
    Miller J, Raymond M, Archer J et al. (2011) An extensibility approach for spatio-temporal stream processing using microsoft stream insight. Adv Spatial Temporal Databases - 12th Int Symp, SSTD 2011, Minneapolis, MN, USA, August 24-26, 2011, Proceedings, 496–501Google Scholar
  96. 96.
    Ali MH, Chandramouli B, Raman BS, Katibah E (2010) Spatio-temporal stream processing in microsoft streaminsight. IEEE Data Eng Bull 33(2):69–74Google Scholar
  97. 97.
    Meskovic E, Osmanovic D, Galic Z et al. (2014) Generating spatio-temporal streaming trajectories. 37th Int Convention Inform Commun Technol, Electron Microelectronics, MIPRO 2014, Opatija, Croatia, 1130–1135Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Naval Academy Research LabBrestFrance

Personalised recommendations