GeoInformatica

, Volume 19, Issue 3, pp 487–524 | Cite as

The TM-RTree: an index on generic moving objects for range queries

Article

Abstract

Existing works on moving objects mainly focus on a single environment such as free space and road network, and do not investigate the complete trip for humans who can pass several environments, e.g., road network, pavement areas, indoor. In this paper, we consider multiple environments and study moving objects with different transportation modes, also called generic moving objects. We aim to answer a new class of queries supporting three kinds of conditions: temporal, spatial, and transportation modes. To efficiently provide the result, we propose an index structure called TM-RTree, which takes into account the feature of moving objects in different environments and has the capability of managing objects on not only temporal and spatial data but also transportation modes. This property is not maintained by existing indices for moving objects. Different cases on transportation modes are supported. Correspondingly, several algorithms are developed. The TM-RTree and related algorithms are developed in a real DBMS to have a practical and solid result for applications. In the experiment, we conduct the performance evaluation using extensive datasets and compare the proposed technique with the other two competitors, demonstrating the efficiency and significant superiority of our solution in various settings.

Keywords

Transportation modes Range queries Index structure 

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
    Bauer V, Gamper J, Loperfido R, Profanter S, Putzer S, Timko I (2008) Computing isochrones in multi-modal, schedule-based transport networks. In: ACM GIS, Demo, p 78Google Scholar
  6. 6.
    Berchtold S, Böhm C, Kriegel HP (1998) Improving the query performance of high-dimensional index structures by bulk load operations. In: EDBT, pp 216–230Google Scholar
  7. 7.
    Bercken J, Seeger B, Widmayer P (1997) A generic approach to bulk loading multidimensional index structures. In: VLDB, pp 406–415Google Scholar
  8. 8.
    Booth J, Sistla P, Wolfson O, Cruz IF (2009) A data model for trip planning in multimodal transportation systems. In: EDBT, pp 994–1005Google Scholar
  9. 9.
    Cai Y, Ng R (2004) Indexing spatio-temporal trajectories with chebyshev polynomials. In: SIGMOD, pp 599–610Google Scholar
  10. 10.
    Chakka VP, Everspaugh A, Patel JM (2003) Indexing large trajectory data sets with seti. In: CIDRGoogle Scholar
  11. 11.
    Cong G, Jensen CS, Wu D (2009) Efficient retrieval of the top-k most relevant spatial web objects. PVLDB 2(1):337–348Google Scholar
  12. 12.
    Cong G, Lu H, Ooi BC, Zhang D, Zhang M (2012) Efficient spatial keyword search in trajectory databases. CoRR, abs/1205.2880Google Scholar
  13. 13.
    de Almeida VT, Güting RH (2005) Indexing the trajectories of moving objects in networks. GeoInformatica 9(1):33–60CrossRefGoogle Scholar
  14. 14.
    Felipe ID, Hristidis V, Rishe N (2008) Keyword search on spatial databases. In: ICDE, pp 656–665Google Scholar
  15. 15.
    Forlizzi L, Güting RH, Nardelli E, Schneider M (2000) A data model and data structures for moving objects databases. In: SIGMOD, pp 319–330Google Scholar
  16. 16.
    Frentzos E (2003) Indexing objects moving on fixed networks. In: SSTD, pp 289–305Google Scholar
  17. 17.
    Gedik B, Liu L (2004) Mobieyes: distributed processing of continuously moving queries on moving objects in a mobile system. In: EDBT, pp 67–87Google Scholar
  18. 18.
    Güting RH, Almedia V, Ansorge D, Behr T, Ding Z, Höse T, Hoffmann F, Spiekermann M (2005) Secondo:an extensible dbms platform for research prototyping and teaching. In: ICDE, Demo Paper, pp 1115–1116Google Scholar
  19. 19.
    Güting RH, de Almeida VT, Ding ZM (2006) Modeling and querying moving objects in networks. VLDB J 15(2):165–190CrossRefGoogle Scholar
  20. 20.
    Güting RH, Böhlen MH, Erwig M, Jensen CS, Lorentzos NA, Schneider M, Vazirgiannis M (2000) A foundation for representing and querying moving objects. ACM TODS 25(1):1–42CrossRefGoogle Scholar
  21. 21.
    Hage C, Jensen CS, Pedersen TB, Speicys L, Timko I (2003) Integrated data management for mobile services in the real world. In: VLDB, pp 1019–1030Google Scholar
  22. 22.
    Jensen CS, Lu H, Yang B (2009) Graph model based indoor tracking. In: MDM, pp 122–131Google Scholar
  23. 23.
    Jensen CS, Lu H, Yang B (2009) Indexing the trajectories of moving objects in symbolic indoor space. In: SSTD, pp 208–227Google Scholar
  24. 24.
    Kollios G, Papadopoulos D, Gunopulos D, Tsotras VJ (2005) Indexing mobile objects using dual transformations. VLDB J 14(2):238–256CrossRefGoogle Scholar
  25. 25.
    Dinh L, Aref WG, Mokbel MF (2010) Spatio-temporal access methods: Part 2 (2003–2010). IEEE Data Eng Bull 33(2):46–55Google Scholar
  26. 26.
    Li M, Dai J, Sahu S, Naphade MR (2011) Trip analyzer through smartphone apps. In: GIS, pp 537–540Google Scholar
  27. 27.
    Lu H, Cao X, Jensen CS (2012) A foundation for efficient indoor distance-aware query processing. In: ICDE, pp 438–449Google Scholar
  28. 28.
    Mokbel MF, Xiong X, Aref WG (2004) Sina: scalable incremental processing of continuous queries in spatio-temporal databases. In: SIGMOD Conference, pp 623–634Google Scholar
  29. 29.
    Pelanis M, Saltenis S, Jensen CS (2006) Indexing the past, present, and anticipated future positions of moving objects. ACM TODS 31(1):255–298CrossRefGoogle Scholar
  30. 30.
    Pfoser D, Jensen CS (2003) Indexing of network constrained moving objects. In: GIS, pp 25–32Google Scholar
  31. 31.
    Pfoser D, Jensen CS (2000) Novel approaches in query processing for moving object trajectories. In: VLDB, pp 395–406Google Scholar
  32. 32.
    Popa IS, Zeitouni K, Oria V, Barth D, Vial S (2011) Indexing in-network trajectory flows. VLDB J 20(5):643–669CrossRefGoogle Scholar
  33. 33.
    Reddy S, Mun M, Burke J, Estrin D, Hansen MH, Srivastava MB (2010) Using mobile phones to determine transportation modes. TOSN 6(2)Google Scholar
  34. 34.
    Sistla P, Wolfson O, Chamberlain S, Dao S (1997) Modeling and querying moving objects. In: ICDE, pp. 422–432Google Scholar
  35. 35.
    Stenneth L, Wolfson O, Yu P, Xu B (2011) Transportation Mode Detection using Mobile Devices and GIS Information. In: ACM SIGSPATIAL, pp 54–63Google Scholar
  36. 36.
    Tao Y, Papadias D (2001) Mv3r-tree: A spatio-temporal access method for timestamp and interval queries. In: VLDB, pp 431–440Google Scholar
  37. 37.
    Tao Y, Papadias D, Sun J (2003) The TPR*-Tree: an optimized spatio-temporal access method for predictive queries. In: VLDB, pp 790–801Google Scholar
  38. 38.
    Theodoridis Y, Vazirgiannis M, Sellis TK (1996) Spatio-temporal indexing for large multimedia applications. In: ICMCS, pp 441–448Google Scholar
  39. 39.
    Wang H, Zimmermann R (2011) Processing of continuous location-based range queries on moving objects in road networks. IEEE Trans Knowl Data Eng 23(7):1065–1078CrossRefGoogle Scholar
  40. 40.
    Wang L, Zheng Y, Xie X, Ma WY (2008) A flexible spatio-temporal indexing scheme for large-scale gps track retrieval. In: MDM, pp 1–8Google Scholar
  41. 41.
    Wu D, Yiu ML, Cong G, Jensen CS (2012) Joint top-k spatial keyword query processing. IEEE Trans Knowl Data Eng 24(10):1889–1903CrossRefGoogle Scholar
  42. 42.
    Xu J, Güting RH (2012) MWGen: a mini world generator. In: MDM, pp 258–267Google Scholar
  43. 43.
    Xu J, Güting RH (2013) A generic data model for moving objects. GeoInformatica 17(1):125–172CrossRefGoogle Scholar
  44. 44.
    Yang B, Lu H, Jensen CS (2009) Scalable continuous range monitoring of moving objects in symbolic indoor space. In: CIKM, pp 671–680Google Scholar
  45. 45.
    Zhang D, Chee YM, Mondal A, Tung AKH, Kitsuregawa M (2009) Keyword search in spatial databases: Towards searching by document. In: ICDE, pp 688–699Google Scholar
  46. 46.
    Zheng Y, Chen Y, Xie X, Ma WY (2010) Understanding transportation mode based on GPS data for Web application, vol 4Google Scholar
  47. 47.
    Zheng Y, Xie X, Ma WY (2010) GeoLife: A collaborative social networking service among user, location and trajectory. Invited paper. IEEE Data Eng Bull 32(2):32–40Google Scholar
  48. 48.
    Zheng Y, Zhang L, Ma Z, Xie X, Ma WY (2011) Recommending friends and locations based on individual location history. TWEB 5(1):5CrossRefGoogle Scholar
  49. 49.
    Zheng Y, Zhou X (2011) Computing with spatial trajectories, SpringerGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Nanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.FernUniversität in HagenHagenGermany
  3. 3.Microsoft Research AsiaBeijingChina

Personalised recommendations