, Volume 19, Issue 2, pp 227–276 | Cite as

GMOBench: Benchmarking generic moving objects



In real world scenarios, people’s movement include several environments rather than one, for example, road network, pavement areas and indoor. This imposes a new challenge for moving objects database that the complete trip needs to be managed by a database system. In the meantime, novel queries regarding different transportation modes should also be supported. Since existing methods are limited to trips in a single environment and do not support queries on moving objects with different transportation modes, new technologies are essentially needed in a database system. In this paper, we introduce a benchmark called GMOBench that aims to evaluate the performance of a database system managing moving objects in different environments. GMOBench is settled in a realistic scenario and is comprised of three components: (1) a data generator with the capability of creating a scalable set of trips representing the complete movement of humans (both indoor and outdoor); (2) a set of carefully designed and benchmark queries; (3) Mode-RTree, an index structure for managing generic moving objects. The generator defines some parameters so that users can control the characteristics of results. We create the benchmark data in such a way that the dataset can mirror important characteristics and real world distributions of human mobility. Efficient access methods and optimization techniques are developed for query processing. In particular, we propose an index structure called Mode-RTree to manage moving objects in different environments. By employing the proposed index, the cost of benchmark queries is greatly reduced. GMOBench is implemented in a real database system to have a practical result. We perform an extensive experimental study on comprehensive datasets to evaluate the performance. The results show that by using the Mode-RTree we achieve significant performance improvement over the baseline method, demonstrating the effectiveness and efficiency of our approaches.


Moving objects Transportation modes Benchmark Query processing Index 



This work is supported in part by NSFC under grants 61300052, the Scientific Research Foundation for the Returned Overseas Chinese Scholars (State Education Ministry), and Natural Science Foundation of Jiangsu Province of China under grants BK20130810.


  1. 1.
    Bauer V, Gamper J, Loperfido R, Profanter S, Putzer S, Timko I (2008) Computing isochrones in multi-modal, schedule-based transport networks. In: ACM GIS, DemoGoogle Scholar
  2. 2.
    Berchtold S, Böhm C, Kriegel HP (1998) Improving the query performance of high-dimensional index structures by bulk load operations. In: EDBT, pp 216–230Google Scholar
  3. 3.
    Bercken J, Seeger B, Widmayer P (1997) A generic approach to bulk loading multidimensional index structures. In: VLDB, pages 406–415Google Scholar
  4. 4.
    Bitton D, DeWitt DJ, Turbyfill C (1983) Benchmarking database systems a systematic approach. In: VLDB, pp 8–19Google Scholar
  5. 5.
    Booth J, Sistla P, Wolfson O, Cruz IF (2009) A data model for trip planning in multimodal transportation systems. In: EDBT, pp 994–1005Google Scholar
  6. 6.
    Brinkhoff T (2000) Generating network-based moving objects. In: SSDBM, pp 253–255Google Scholar
  7. 7.
    Brinkhoff T (2002) A framework for generating network-based moving objects. GeoInformatica 6 (2): 153–180CrossRefGoogle Scholar
  8. 8.
    Cai Y, Ng R (2004) Indexing spatio-temporal trajectories with chebyshev polynomials. In: SIGMOD, pp 599–610Google Scholar
  9. 9.
    Carey MJ, DeWitt DJ, Naughton JF (1993) The oo7 benchmark. In: SIGMOD conference, pp 12–21Google Scholar
  10. 10.
    Chakka VP, Everspaugh A, Patel JM (2003) Indexing large trajectory data sets with seti. In: CIDRGoogle Scholar
  11. 11.
    Chen S, Jensen CS, Lin D (2008) A benchmark for evaluating moving object indexes. PVLDB 1 (2): 1574–1585Google Scholar
  12. 12.
    de Almeida VT, Güting RH (2005) Indexing the trajectories of moving objects in networks. GeoInformatica 9 (1): 33–60CrossRefGoogle Scholar
  13. 13.
    Duan S, Kementsietsidis A, Srinivas K, Udrea O (2011) Apples and oranges: a comparison of rdf benchmarks and real rdf datasets. In: SIGMOD Conference, pp 145–156Google Scholar
  14. 14.
    Düntgen C, Behr T, Güting RH (2009) Berlinmod: a benchmark for moving object databases. VLDB J 18 (6): 1335–1368CrossRefGoogle Scholar
  15. 15.
    Frentzos E (2003) Indexing objects moving on fixed networks. In: SSTD, pp 289–305Google Scholar
  16. 16.
    Frentzos E, Gratsias K, Pelekis N, Theodoridis Y (2007) Algorithms for nearest neighbor search on moving object trajectories. GeoInformatica 11 (2): 159–193CrossRefGoogle Scholar
  17. 17.
    Giannotti F, Nanni M, Pedreschi D, Pinelli F, Renso C, Rinzivillo S, Trasarti R (2011) Unveiling the complexity of human mobility by querying and mining massive trajectory data. VLDB J 20 (5): 695– 719CrossRefGoogle Scholar
  18. 18.
    Giannotti F, Nanni M, Pedreschi D, Pinelli F, Renso C, Rinzivillo S, Trasarti R (2011) Unveiling the complexity of human mobility by querying and mining massive trajectory data. VLDB J Spec IssueGoogle Scholar
  19. 19.
    Gidófalvi G, Pedersen TB (2006) St-acts: a spatio-temporal activity simulator. In: GIS, pp 155–162Google Scholar
  20. 20.
    González MC, Hidalgo CAR, Barabási A (2008) Understanding individual human mobility patterns. Nature 453: 779–282CrossRefGoogle Scholar
  21. 21.
    Gray J (ed.) (1993) The benchmark handbook for database and transaction systems (2nd Edition). Morgan KaufmannGoogle Scholar
  22. 22.
    Güting RH, Almedia V, Ansorge D, Behr T, Ding Z, Höse T, Hoffmann F, Spiekermann M (2005) Secondo:an extensible dbms platform for research prototyping and teaching. In: ICDE, Demo Paper, pp 1115–1116Google Scholar
  23. 23.
    Hu H, Lee DL (2005) Gamma: A framework for moving object simulation. In: SSTD, pp 37–54Google Scholar
  24. 24.
    Jensen CS, Lu H, Yang B (2009) Indexing the trajectories of moving objects in symbolic indoor space. In: SSTD, pp 208–227Google Scholar
  25. 25.
    Jensen CS, Tiesyte D, Tradisauskas N (2006) The cost benchmark-comparison and evaluation of spatio-temporal indexes. In: DASFAA, pp 125–140Google Scholar
  26. 26.
    Dinh L, Aref WG, Mokbel MF (2010) Spatio-temporal access methods: Part 2 (2003–2010). IEEE Data Eng Bull 33 (2): 46–55Google Scholar
  27. 27.
    Lu H, Cao X, Jensen CS (2012) A foundation for efficient indoor distance-aware query processing. In: ICDE, pp 438–449Google Scholar
  28. 28.
    Mascetti S, Freni D, Bettini C, Wang XS, Jajodia S (2008) On the impact of user movement simulations in the evaluation of lbs privacy- preserving techniques. In: PiLBAGoogle Scholar
  29. 29.
    Mouratidis K, Hadjieleftheriou M, Papadias D (2005) Conceptual partitioning: an efficient method for continuous nearest neighbor monitoring. In: SIGMOD, pp 634–645Google Scholar
  30. 30.
    Myllymaki J, Kaufman JH (2003) Dynamark: a benchmark for dynamic spatial indexing. In: Mobile data management, pp 92–105Google Scholar
  31. 31.
    Nguyen AD, Sénac P, Ramiro V, Diaz M (2011) Steps-an approach for human mobility modeling. Networking 1: 254–265Google Scholar
  32. 32.
    Pelanis M, Saltenis S, Jensen CS (2006) Indexing the past, present, and anticipated future positions of moving objects. ACM TODS 31 (1): 255–298CrossRefGoogle Scholar
  33. 33.
    Pfoser D, Jensen CS (2003) Indexing of network constrained moving objects. In: GIS, pp 25–32Google Scholar
  34. 34.
    Pfoser D, Jensen CS (2000) Novel approaches to the indexing of moving object trajectories. In: VLDBGoogle Scholar
  35. 35.
    Pfoser D, Theodoridis Y (2003) Generating semantics-based trajectories of moving objects. Comput Environ Urban Syst 27 (3): 243–263CrossRefGoogle Scholar
  36. 36.
    Popa IS, Zeitouni K, Oria V, Barth D, Vial S (2011) Indexing in-network trajectory flows. VLDB J 20 (5): 643–669CrossRefGoogle Scholar
  37. 37.
    Ray S, Simion B, Brown AD (2011) Jackpine: a benchmark to evaluate spatial database performance. In: ICDE, pp 1139–1150Google Scholar
  38. 38.
    Reddy S, Mun M, Burke J, Estrin D, Hansen MH, Srivastava MB (2010) Using mobile phones to determine transportation modes. TOSN 6 (2)Google Scholar
  39. 40.
    Saglio JM, Moreira J (2001) Oporto: a realistic scenario generator for moving objects. GeoInformatica 5 (1): 71–93CrossRefGoogle Scholar
  40. 40.
    Saltenis S, Jensen CS, Leutenegger ST, Lopez MA (2000) Indexing the positions of continuously moving objects. In: SIGMOD Conference, pp 331–342Google Scholar
  41. 41.
    Schmidt M, Hornung T, Lausen G, Pinkel C (2009) Sp2bench: a sparql performance benchmark. In: ICDE, pp 222–233Google Scholar
  42. 42.
    Stenneth L, Wolfson O, Yu P, Xu B (2011) Transportation mode detection using mobile devices and gis information. In: ACM SIGSPATIAL, pp 54–63Google Scholar
  43. 43.
    Stonebraker M, Frew J, Gardels K, Meredith J (1993) The sequoia 2000 benchmark. In: SIGMOD Conference, pp 2–11Google Scholar
  44. 44.
    Tao Y, Papadias D (2001) Mv3r-tree: a spatio-temporal access method for timestamp and interval queries. In: VLDB, pp 431–440Google Scholar
  45. 45.
    Tao Y, Papadias D, Shen Q (2002) Continuous nearest neighbor search. In: VLDB, pp 287–298Google Scholar
  46. 46.
    Theodoridis Y (2003) Ten benchmark database queries for location-based services. Comput J 46 (6): 713–725CrossRefGoogle Scholar
  47. 47.
    Theodoridis Y, Silva JRO, Nascimento MA (1999) On the generation of spatiotemporal datasets. In: SSD, pp 147–164Google Scholar
  48. 48.
    Tözün P, Pandis I, Kaynak C, Jevdjic D, Ailamaki A (2013) From a to e: analyzing tpc’s oltp benchmarks: the obsolete, the ubiquitous, the unexplored. In: EDBT, pp 17–28Google Scholar
  49. 49.
    Tzouramanis T, Vassilakopoulos M, Manolopoulos Y (2002) On the generation of time-evolving regional data. 6 3Google Scholar
  50. 50.
    Werstein PF (1998) A performance benchmark for spatiotemporal databases. In: 10th annual colloquium of the spatial information research centre, pp 365–373Google Scholar
  51. 51.
    Wu K, Shoshani A, Stockinger K (2010) Analyses of multi-level and multi-component compressed bitmap indexes. ACM Trans Database Syst 35 (1)Google Scholar
  52. 52.
    Xie X, Lu H, Pedersen TB (2013) Efficient distance-aware query evaluation on indoor moving objects. In: ICDE, pp 434–445Google Scholar
  53. 53.
    Xu J, Güting RH (2011) Infrastructures for research on multimodal moving objects. In: MDM, Demo Paper, pp 329–332Google Scholar
  54. 54.
    Xu J, Güting RH (2012) MWGen: a mini world generator. In: MDM, pp 258–267Google Scholar
  55. 55.
    Xu J, Güting RH (2013) A generic data model for moving objects. GeoInformatica 17 (1): 125–172CrossRefGoogle Scholar
  56. 56.
    Yang B, Lu H, Jensen CS (2010) Probabilistic threshold k nearest neighbor queries over moving objects in symbolic indoor space. In: EDBT, pp 335–346Google Scholar
  57. 57.
    Zheng Y, Chen Y, Xie X, Ma WY (2010) Understanding transportation mode based on gps data for web application. ACM Trans Web 4 (1): 1–36CrossRefGoogle Scholar
  58. 58.
    Zheng Y, Liu L, Wang L, Xie X (2008) Learning transportation mode from raw gps data for geographic applications on the web. In: WWW, pp 247–256Google Scholar
  59. 59.
    Zheng Y, Zhou X (2011) Computing with spatial trajectories. SpringerGoogle Scholar
  60. 60.
    Zhou P, Zhang D, Salzberg B, Cooperman G, Kollios G (2005) Close pair queries in moving object databases. In: GIS, pp 2–11Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jianqiu Xu
    • 1
  • Ralf Hartmut Güting
    • 2
  • Xiaolin Qin
    • 1
  1. 1.Nanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.FernUniversität in HagenHagenGermany

Personalised recommendations