Skip to main content

Improving geographic information retrieval in spatial data infrastructures


In recent years, spatial data infrastructures (SDIs) have gained great popularity as a solution to facilitate interoperable access to geospatial data offered by different agencies. In order to enhance the data retrieval process, current infrastructures usually offer a catalog service. Nevertheless, such catalog services still have important limitations that make it difficult for users to find the geospatial data that they are interested in. Some current catalog drawbacks include the use of a single record to describe all the feature types offered by a service, the lack of formal means to describe the semantics of the underlying data, and the lack of an effective ranking metric to organize the results retrieved from a query. Aiming to overcome these limitations, this article proposes SESDI (Semantically-Enabled Spatial Data Infrastructures), which is framework that reuses techniques of classic information retrieval to improve geographic data retrieval in a SDI. Moreover, the framework proposes several ranking metrics to solve spatial, semantic, temporal and multidimensional queries.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13





  1. Andrade FG, Baptista CS (2011) Using semantic similarity to improve information discovery in spatial data infrastructures. J Inf Data Manag 2(2):301–308

    Google Scholar 

  2. Athanasis N, Kalabokidis K, Vaitis M, Soulakellis N (2009) Towards a semantics-based approach in the development of geographic portals. Comput Geosci 35(2):301–308. doi:10.1016/j.cageo.2008.01.014

    Article  Google Scholar 

  3. Auer S, Bizer C, Kobilarov G, Lehmann J, Cyganiak R, Ives Z (2007) DBpedia: a nucleus for a Web of open data. The 6th International Semantic Web Conference. doi:10.1007/978-3-540-76298-0_52.

  4. Baader F, Calvanese D, McGuinness D, Nardi D, Patel-Schneider P (2003) The Description Logic handbook: theory, implementation, applications. Cambridge University Press, Cambridge

    Google Scholar 

  5. Baeza-Yates R, Ribeiro-Neto B (1999) Modern information retrieval. Addison Wesley, London

    Google Scholar 

  6. Bai Y, Di L, Wei Y (2009) A taxonomy of geospatial services for global service discovery and interoperability. Comput Geosci 35(4):783–790. doi:10.1016/j.cageo.2007.12.018

    Article  Google Scholar 

  7. [7] Beaujardiere J (2004) OGC Web Map Service Interface v1.3.0. Open Geospatial Consortium. Accessed 28 September 2013

  8. Bizer C, Heath T, Berners-Lee T (2009) Linked Data - the story so far. Int J Semant Web Inf Syst 5(3):1–22. doi:10.4018/jswis.2009081901

    Article  Google Scholar 

  9. Chen N, Chen Z, Hu C, Di L (2011) A capability matching and ontology reasoning method for high precision OGC web service discovery. Int J Digit Earth 4(6):449–470. doi:10.1080/17538947.2011.553688

    Article  Google Scholar 

  10. Fox EA, Shaw, JA (1994). Combination of multiple searches. Second Text Retrieval Conference (TREC-2), 1994, 243–252.

  11. Ge J, Qiu Y (2008) Concept similarity matching based on semantic distance. Int Conf Semant Knowl Grid. doi:10.1109/SKG.2008.24

    Google Scholar 

  12. Guarino N (1995) Formal ontology, conceptual analysis and knowledge representation. Int J Hum Comput Stud 43(5–6):625–640. doi:10.1006/ijhc.1995.1066

    Article  Google Scholar 

  13. Janowicz K, Wilkes M, Lutz M (2008) Similarity-based information retrieval and its role within spatial data infrastructures. Int Conf Geogr Inf Sci. doi:10.1007/978-3-540-87473-7_10

    Google Scholar 

  14. Klien E, Lutz M, Kuhn W (2006) Ontology-based discovery of geographic information services - an application in disaster management. Comput Environ Urban Syst 30:102–123. doi:10.1016/j.compenvurbsys.2005.04.002

    Article  Google Scholar 

  15. Lemmens R, de By R, Gould M, Wytzisk A, Granell C, Van Oosterom P (2007) Enhancing geo-service chaining through deep service descriptions. Trans GIS 11(6):849–871. doi:10.1111/j.1467-9671.2007.01079.x

    Article  Google Scholar 

  16. Li W, Yang C, Yang C (2010) An active crawler for discovering geospatial web services and their distribution pattern. Int J Geogr Inf Sci 24(8):1127–1147. doi:10.1080/13658810903514172

    Article  Google Scholar 

  17. Li W, Yang C, Nebert D, Raskin R, Houser P, Wu H, Li Z (2011) Semantic-based web service discovery and chaining for building an Arctic spatial data infrastructure. Comput Geosci 37(11):1752–1762. doi:10.1016/j.cageo.2011.06.024

    Article  Google Scholar 

  18. Li W, Raskin R, Goodchild MF (2012) Semantic similarity measurement based on knowledge mining: an artificial neural network approach. Int J Geogr Inf Sci 26(8):1415–1435. doi:10.1080/13658816.2011.635595

    Article  Google Scholar 

  19. Li Z, Yang CP, Wu H, Li W, Miao L (2011) An optimized framework for seamlessly integrating OGC Web Services to support geospatial sciences. Int J Geogr Inf Sci 25(4):595–613. doi:10.1080/13658816.2010.484811

    Article  Google Scholar 

  20. Liu K, Yang C, Li W, Li Z, Wu H, Rezgui A, Xia J (2011) The GEOSS clearinghouse high performance search engine. The 19th International Conference on Geoinformatics. doi:10.1109/GeoInformatics.2011.5981077.

  21. Lutz M (2007) Ontology-based descriptions for semantic discovery and composition of geoprocessing services. GeoInformatica 11:1–36. doi:10.1111/j.1467-9671.2007.01079.x

    Article  Google Scholar 

  22. Lutz M, Klien E (2006) Ontology-based retrieval of geographic information. Int J Geogr Inf Sci 20(3):233–260. doi:10.1080/13658810500287107

    Article  Google Scholar 

  23. Lutz M, Kolas D (2007) Rule-based discovery in spatial data infrastructure. Trans GIS 11(3):317–336. doi:10.1111/j.1467-9671.2007.01048.x

    Article  Google Scholar 

  24. Lutz M, Witte J, Klien E, Schubert C, Christ I (2009) Overcoming semantic heterogeneity in spatial data infrastructures. Comput Geosci 35(4):739–752. doi:10.1016/j.cageo.2007.09.017

    Article  Google Scholar 

  25. Molina M, Bayarri S (2011) A multinational SDI-based system to facilitate disaster risk management in the Andean Community. Comput Geosci 37(9):1501–1510. doi:10.1016/j.cageo.2011.01.015

    Article  Google Scholar 

  26. [26] Nebert D (2004) Developing spatial data infrastructures: The SDI Cookbook v2.0. Global Spatial Data Infrastructure. Accessed 29 September 2013

  27. [27] Nebert D, Whiteside A, Vretanos P (2007) OpenGIS® Catalogue Services Specification v2.0.2. Open Geospatial Consortium. Accessed 29 September 2013

  28. Resnik P (1999) Semantic similarity in a taxonomy: an information-based measure and its application to problems of ambiguity in natural language. J Artif Intell Res 11:95–130. doi:10.1613/jair.514

    Google Scholar 

  29. Rodriguez A, Egenhofer M (2003) Determining semantic similarity among entity classes from different ontologies. IEEE Trans Knowl Data Eng 15(2):442–456. doi:10.1109/TKDE.2003.1185844

    Article  Google Scholar 

  30. Salton G, Buckley C (1988) Term-weighting approaches in automatic text retrieval. Inf Process Manag 24(5):513–523. doi:10.1016/0306-4573(88)90021-0

    Article  Google Scholar 

  31. Smits P, Friis-Christensen A (2007) Resource discovery in a European spatial data infrastructure. IEEE Trans Knowl Data Eng 1(19):85–95. doi:10.1109/TKDE.2007.250587

    Article  Google Scholar 

  32. Stock K, Atkinson R, Higgins C, Small M, Woolf A, Millard K, Arctur D (2010) A semantic registry using a feature type catalogue instead of ontologies to support spatial data infrastructures. Int J Geogr Inf Sci 24(2):231–252. doi:10.1080/13658810802570291

    Article  Google Scholar 

  33. Tversky A (1977) Features of similarity. Psychol Rev 84(4):327–352. doi:10.1037/0033-295X.84.4.327

    Article  Google Scholar 

  34. [34] Vretanos PA (2005) Web Feature Service Implementation Specification v.1.1.0. Open Geospatial Consortium. Accessed 29 September 2013

  35. [35] Whiteside A, Greenwood J (2007) OGC Web Services Common Standard v2.0.0. Open Geospatial Consortium. Accessed 29 September 2013

  36. Wiegand N, Garcia C (2007) A task-based ontology approach to automate geospatial data retrieval. Trans GIS 11(3):355–376. doi:10.1111/j.1467-9671.2007.01050.x

    Article  Google Scholar 

  37. Yue P, Di L, Yang W, Yu G, Zhao P (2007) Semantics-based automatic composition of geospatial Web service chains. Comput Geosci 33(5):649–665. doi:10.1016/j.cageo.2006.09.003

    Article  Google Scholar 

  38. Zhang C, Zhao T, Li W, Osleeb JP (2010) Towards logic-based geospatial feature discovery and integration using web feature service and geospatial semantic web. Int J Geogr Inf Sci 24(6):903–923. doi:10.1080/13658810903240687

    Article  Google Scholar 

Download references


The authors acknowledge the support provided by Instituto Federal de Educação, Ciência e Tecnologia da Paraíba (IFPB), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Brazilian agencies in charge of fostering research and development.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Fabio Gomes de Andrade.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de Andrade, F.G., de Souza Baptista, C. & Davis, C.A. Improving geographic information retrieval in spatial data infrastructures. Geoinformatica 18, 793–818 (2014).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Spatial data infrastructures
  • Ranking
  • Geospatial data retrieval
  • Ontology