Skip to main content

Opportunistic sampling-based query processing in wireless sensor networks


High resolution sampling of physical phenomenon is a prime application of large scale wireless sensor networks (WSNs). With hundreds of nodes deployed over vast tracts of land, monitoring data can now be generated at unprecedented spatio-temporal scales. However, the limited battery life of individual nodes in the network mandates smart ways of collecting this data by maximizing localized processing of information at the node level. In this paper, we propose a WSN query processing method that enhances localized information processing by harnessing the two inherent aspects of WSN communication, i.e., multihop and multipath data transmission. In an active WSN where data collection queries are regularly processed, multihop and multipath routing leads to a situation where a significant proportion of nodes relay and overhear data generated by other nodes in the network. We propose that nodes opportunistically sample this data as they communicate. We model the data communication process in a WSN and show that opportunistic sampling during data communication leads to surprisingly accurate global knowledge at each node. We present an opportunistic query processing system that uses the accumulated global knowledge to limit the data collection requirements for future queries while ensuring temporal freshness of the results.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17


  1. Bourke P (2012) Area of multiple intersecting circles. Accessed Sept 2012

  2. Chu D, Deshpande A, Hellerstein JM, Hong W (2006) Approximate data collection in sensor networks using probabilistic models. In: Proceedings of ICDE, p 48

  3. Clark I, Harper WV (2000) Practical geostatistics 2000. Ecosse North America, Waterlooville

    Google Scholar 

  4. Considine J, Li F, Kollios G, Byers J (2004) Approximate aggregation techniques for sensor databases. In: Proceedings of ICDE, pp 449–460

  5. Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to algorithms. MIT Press, Cambridge

    Google Scholar 

  6. Cressie N, Huang HC (1999) Classes of nonseparable, spatio-temporal stationary covariance functions. J Am Stat Assoc 94(448):1330–1340

    Article  Google Scholar 

  7. Cressie NA (1993) Statistics for spatial data. Wiley, New York

    Google Scholar 

  8. Crossbow Technologies (2009) Accessed Sept 2012

  9. Fewell MP (2006) Area of common overlap of three circles. Technical Note DSTO-TN-0722, Defence Science and Technology Organization, Australia. Accessed Sept 2012

  10. Gandhi S, Suri S, Welzl E (2010) Catching elephants with mice: Sparse sampling for monitoring sensor networks. ACM Trans Sen Netw 1(6):1–27

    Google Scholar 

  11. Ganesan D, Greenstein B, Estrin D, Heidemann J, Govindan R (2005) Multiresolution storage and search in sensor networks. ACM Trans Storage 1(3):277–315

    Article  Google Scholar 

  12. Gao J, Guibas LJ, Hershberger J, Zhang L (2004) Fractionally cascaded information in a sensor network. In: Proceedings of IPSN, pp 311–319

  13. Greenstein B, Estrin D, Govindan R, Ratnasamy S, Shenker S (2003) DIFS: a distributed index for features in sensor networks. J Ad Hoc Netw 1(2–3):333–349

    Article  Google Scholar 

  14. Guestrin C, Bodik P, Thibaux R, Paskin M, Madden S (2004) Distributed regression: an efficient framework for modeling sensor network data. In: Proceedings of IPSN, pp 1–10

  15. Huebsch R, Garofalakis M, Hellerstein JM, Stoica I (2007) Sharing aggregate computation for distributed queries. In: Proceedings of SIGMOD, pp 485–496

  16. Intanagonwiwat C, Govindan R, Estrin D, Heidemann J, Silva F (2003) Directed diffusion for wireless sensor networking. IEEE/ACM Trans Netw 11(1):2–16

    Article  Google Scholar 

  17. Intel Lab Data (2010) Accessed Sept 2012

  18. Isaaks E, Srivatava RM (1989) An introduction to applied geostatistics. Oxford University Press, New York

    Google Scholar 

  19. Kempe D, Kleinberg J, Demers A (2001) Spatial gossip and resource location protocols. In: Proceedings of STOC, pp 163–172

  20. Lund C, Yannakakis M (1994) On the hardness of approximating minimization problems. J ACM 41(5):960–981

    Article  Google Scholar 

  21. Ma YZ, Jones TA (2001) Teacher’s aide: Modeling hole-effect variograms of lithology-indicator variables. Math Geol 33(5):631–648

    Article  Google Scholar 

  22. Madden S, Franklin MJ, Hellerstein JM, Hong W (2002) TAG: a tiny aggregation service for ad-hoc sensor networks. SIGOPS Oper Syst Rev 36(SI):131–146

    Article  Google Scholar 

  23. Madden S, Franklin MJ, Hellerstein JM, Hong W (2005) TinyDB: an acquisitional query processing system for sensor networks. ACM Trans Database Syst 30(1):122–173

    Article  Google Scholar 

  24. Manjhi A, Nath S, Gibbons PB (2005) Tributaries and deltas: efficient and robust aggregation in sensor network streams. In: Proceedings of SIGMOD, pp 287–298

  25. Nath S, Gibbons PB, Seshan S, Anderson ZR (2004) Synopsis diffusion for robust aggregation in sensor networks. In: Proceedings of SenSys, pp 250–262

  26. Ratnasamy S, Karp B, Shenker S, Estrin D, Govindan R, Yin L, Yu F (2003) Data-centric storage in sensornets with GHT, a geographic hash table. Mob Netw Appl 8(4):427–442

    Article  Google Scholar 

  27. Sarkar R, Zhu X, Gao J (2007) Hierarchical spatial gossip for multi-resolution representations in sensor networks. In: Proceedings of IPSN, pp 420–429

  28. Silberstein A, Braynard R, Yang J (2006) Constraint chaining: on energy-efficient continuous monitoring in sensor networks. In: Proceedings of SIGMOD, pp 157–168

  29. Umer M, Tanin E, Kulik L (2009) Opportunistic sampling in wireless sensor networks. In: Proceedings of ACM SIGSPATIAL GIS 2009, pp 492–495

  30. Yao Y, Gehrke J (2002) The Cougar approach to in-network query processing in sensor networks. ACM SIGMOD Record 31(2):9–18

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Muhammad Umer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Umer, M., Tanin, E. & Kulik, L. Opportunistic sampling-based query processing in wireless sensor networks. Geoinformatica 17, 567–597 (2013).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Wireless sensor networks
  • Query processing
  • Spatio-temporal modeling